. | . |
The death of a planet nursery? by Staff Writers Munich, Germany (SPX) Oct 06, 2016
The dusty disk surrounding the star TW Hydrae exhibits circular features that may signal the formation of protoplanets. LMU astrophysicist Barbara Ercolano argues, however, that the innermost actually points to the impending dispersal of the disk. When the maps appeared at the end of March, experts were electrified. The images revealed an orange-red disk pitted with circular gaps that looked like the grooves in an old-fashioned long-playing record. But this was no throwback to the psychedelic Sixties. It was a detailed portrait of a so-called protoplanetary disk, made up of gas and dust grains, associated with a young star - the kind of structure out of which planets could be expected to form. Not only that, the maps showed that the disk around the star known as TW Hydrae exhibits several clearly defined gaps. Astronomers speculated that these gaps might indicate the presence of protoplanets, which had pushed away the material along their orbital paths. And to make the story even more seductive, one prominent gap is located at approximately the same distance from TW Hydrae as Earth is from the Sun - raising the possibility that this putative exoplanet could be an Earth-like one. Now an international team led by Professor Barbara Ercolano at LMU's Astronomical Observatory has compared the new observations with theoretical models of planet formation. The study indicates that the prominent gap in the TW Hydrae system is unlikely to be due to the action of an actively accreting protoplanet. Instead, the team attributes the feature to a process known as photoevaporation. Photoevaporation occurs when the intense radiation emitted by the parent star heats the gas, allowing it to fly away from the disk. But although hopes of a new exo-Earth orbiting in the inner gap of TW Hydrae may themselves have evaporated, the system nevertheless provides the opportunity to observe the dissipation of a circumstellar disk in unprecedented detail. The new findings appear in the journal Monthly Notices of the Royal Astronomical Society (MNRAS).
Only 175 light-years from Earth The spectacular images released in March were made with the Atacama Large Millimeter/submillimeter Array (ALMA), an array of detectors in the desert of Northern Chile. Together, they form a radiotelescope with unparalleled resolving power that can detect the radiation from dust grains in the millimeter size range. Photoevaporation is one of the major forces that shape the fate of circumstellar disks. Not only can it destroy such disks --which typically have a life expectancy of around 10 million years - it can also stop young planets being drawn by gravity and by the interaction with the surrounding disc gas into their parent star. The gaps caused by the action of photoevaporation on the disk, park the planets at their location by removing the gas, allowing the small dusty clumps to grow into fully fledged planets and steering them into stable orbits. However, in the case of the TW Hydrae system, Barbara Ercolano believes that the inner gap revealed by the ALMA maps is not caused by a planet, but represents an early stage in the dissipation of the disk. This view is based on the fact that many characteristic features of the disk around TW Hydrae, such as the distance between the gap and the star, the overall mass accretion rate, and the size and density distributions of the particles, are in very good agreement with the predictions of her photoevaporation model.
Related Links Ludwig-Maximilians-Universitat Munchen Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |