. | . |
Stars with Three Planet-Forming Discs of Gas by Staff Writers Copenhagen, Denmark (SPX) Oct 13, 2016
A star with a ring of planets orbiting around it - that is the picture we know from our own solar system and from many of the thousands of exoplanets observed in recent years. But now researchers from the Niels Bohr Institute have discovered a system consisting of two stars with three rotating planet-forming accretion discs around them. It is a binary star where each star has its own planet-forming disc and in addition, there is one large shared disc. All three planet-forming discs are misaligned in relation to one another. The spectacular results are published in the scientific journal, Astrophysical Journal Letters. A solar system is formed by a large cloud of gas and dust. The cloud of gas and dust condenses and eventually becomes so compact that it collapses into a ball of gas in the centre. Here the pressure heats up the matter and creates a glowing ball of gas, a star. The remainder of the gas and dust cloud rotates as a disc around the newly formed star. In this rotating disc of gas and dust, the material begins to accumulate and form larger and larger clumps, which finally become planets. Often it is not just one, but two stars that are formed in the dense cloud of gas and dust. This is called a binary star and they are held together by their mutual gravity and orbit in a path around each other. About half of all stars are binary stars and they can each have a rotating disc of gas and dust.
Never Before Seen "The two newly formed stars are both the size of our Sun and they each have a rotating disc of gas and dust similar to the size of our solar system. In addition, they have a shared disc that is much larger and crosses over the other two discs. All three discs are staggered and this breaks with everything we have seen so far," says Christian Brinch, assistant professor in the research group Astrophysics and Planetary Science and the Niels Bohr International Academy at the Niels Bohr Institute, University of Copenhagen. The stars were observed with the large international telescope, the Atacama Large Millimeter Array (ALMA) in northern Chile by an international team of researchers from Denmark, England and the Netherlands. The stars are about 400 light-years away from the Earth. The stars are about 100-200,000 years old and planet formation may already have started. They cannot see this. But when they can see the accretion discs, it is because they are still mostly made up of gases.
Tumble Around The researchers do not know why it is not a 'nice' system where the rotating discs of gas lie flat in relation to each other. Perhaps the formation occurred in a particularly turbulent manner. "We will use computer simulations to try to understand the physics of the formation process. Perhaps it is a dynamic process of formation, which happens often and then it corrects itself later on. We will try to clarify this. "We will also apply for more observation time on the ALMA telescope to study the planet-forming discs in even higher resolution to get more detailed information about their chemical composition," says Jes Jorgensen, associate professor in the research group Astrophysics and Planetary Science at the Niels Bohr Institute and Centre for Star and Planet Formation, University of Copenhagen.
Related Links Niels Bohr Institute Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |