. 24/7 Space News .
TECH SPACE
The first laser radio transmitter
by Staff Writers
Boston MA (SPX) May 01, 2019

This device uses a frequency comb laser to emit and modulate microwaves wirelessly. The laser uses different frequencies of light beating together to generate microwave radiation. The researchers used this phenomenon to send a song wirelessly to a receiver.

You've never heard Dean Martin like this.

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences transmitted a recording of Martin's classic "Volare" wirelessly via a semiconductor laser - the first time a laser has been used as a radio frequency transmitter.

In a paper published in the Proceedings of the National Academy of Sciences, the researchers demonstrated a laser that can emit microwaves wirelessly, modulate them, and receive external radio frequency signals.

"The research opens the door to new types of hybrid electronic-photonic devices and is the first step toward ultra-high-speed Wi-Fi," said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, at SEAS and senior author of the study.

This research builds on previous work from the Capasso Lab. In 2017, the researchers discovered that an infrared frequency comb in a quantum cascade laser could be used to generate terahertz frequencies, the submillimeter wavelengths of the electromagnetic spectrum that could move data hundreds of times faster than today's wireless platforms. In 2018, the team found that quantum cascade laser frequency combs could also act as integrated transmitters or receivers to efficiently encode information.

Now, the researchers have figured out a way to extract and transmit wireless signals from laser frequency combs.

Unlike conventional lasers, which emit a single frequency of light, laser frequency combs emit multiple frequencies simultaneously, evenly spaced to resemble the teeth of a comb. In 2018, the researchers discovered that inside the laser, the different frequencies of light beat together to generate microwave radiation. The light inside the cavity of the laser caused electrons to oscillate at microwave frequencies - which are within the communications spectrum.

"If you want to use this device for Wi-Fi, you need to be able to put useful information in the microwave signals and extract that information from the device," said Marco Piccardo, a postdoctoral fellow at SEAS and first author of the paper.

The first thing the new device needed to transmit microwave signals was an antenna. So, the researchers etched a gap into the top electrode of the device, creating a dipole antenna (like the rabbit ears on the top of an old TV). Next, they modulated the frequency comb to encode information on the microwave radiation created by the beating light of the comb. Then, using the antenna, the microwaves are radiated out from the device, containing the encoded information. The radio signal is received by a horn antenna, filtered and sent to a computer.

The researchers also demonstrated that the laser radio could receive signals. The team was able to remotely control the behavior of the laser using microwave signals from another device.

"This all-in-one, integrated device holds great promise for wireless communication," said Piccardo. "While the dream of terahertz wireless communication is still a ways away, this research provides a clear roadmap showing how to get there."

The Harvard Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.


Related Links
Harvard John A. Paulson School of Engineering and Applied Sciences
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
RIT researcher collaborates with UR to develop new form of laser for sound
Rochester NY (SPX) Apr 23, 2019
The optical laser has grown to a $10 billion global technology market since it was invented in 1960, and has led to Nobel prizes for Art Ashkin for developing optical tweezing and Gerard Mourou and Donna Strickland for work with pulsed lasers. Now a Rochester Institute of Technology researcher has teamed up with experts at the University of Rochester to create a different kind of laser - a laser for sound, using the optical tweezer technique invented by Ashkin. In the newest issue of Nature ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
RSC Energia developed a one-orbit rendezvous profile

NASA Aids Testing of Boeing Deep Space Habitat Ground Prototype in Alabama

International Space Station suffers partial power loss, no danger to crew

Photobioreactor: oxygen and a source of nutrition for astronauts

TECH SPACE
NASA Says It Lost $700 Million in Failed Rocket Launches Due to Fraud Scheme

SLS Forward Join Set for Horizontal Assembly to Liquid Hydrogen Tank

SpaceX capsule was destroyed in 'anomaly': lawmaker

SpaceX Dragon cargo launch no earlier than May 3

TECH SPACE
ESA to Lose Member State Support if ExoMars Launch Postponed - Director-General

InSight lander captures audio of first likely 'quake' on Mars

All-woman engineering team heads to NASA Mars competition

A small step for China: Mars base for teens opens in desert

TECH SPACE
China's tracking ship Yuanwang-2 starts new mission after retirement

China to build moon station in 'about 10 years'

China to enhance international space cooperation

China opens Chang'e-6 for international payloads, asteroids next

TECH SPACE
Capella Space ramping up production with Blue Canyon Technologies' Attitude Control Systems

Satellite Constellations and Radio Astronomy

Iridium Awarded Gateway Support and Maintenance Contract by the U.S. Department of Defense

The Third Installment of the SpaceFund Reality (SFR) rating

TECH SPACE
Researchers discover surprising quantum effect in hard disk drive material

Flexible circuits for 3D printing

The first laser radio transmitter

Quantum gas turns supersolid

TECH SPACE
Rapid destruction of Earth-like atmospheres by young stars

Cosmic dust reveals new insights on the formation of solar system

Slime mold memorizes foreign substances by absorbing them

Necrophagy: A means of survival in the Dead Sea

TECH SPACE
Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.