. | . |
RIT researcher collaborates with UR to develop new form of laser for sound by Staff Writers Rochester NY (SPX) Apr 23, 2019
The optical laser has grown to a $10 billion global technology market since it was invented in 1960, and has led to Nobel prizes for Art Ashkin for developing optical tweezing and Gerard Mourou and Donna Strickland for work with pulsed lasers. Now a Rochester Institute of Technology researcher has teamed up with experts at the University of Rochester to create a different kind of laser - a laser for sound, using the optical tweezer technique invented by Ashkin. In the newest issue of Nature Photonics, the researchers propose and demonstrate a phonon laser using an optically levitated nanoparticle. A phonon is a quantum of energy associated with a sound wave and optical tweezers test the limits of quantum effects in isolation and eliminates physical disturbances from the surrounding environment. The researchers studied the mechanical vibrations of the nanoparticle, which is levitated against gravity by the force of radiation at the focus of an optical laser beam. "Measuring the position of the nanoparticle by detecting the light it scatters, and feeding that information back into the tweezer beam allows us to create a laser-like situation," said Mishkat Bhattacharya, associate professor of physics at RIT and a theoretical quantum optics researcher. "The mechanical vibrations become intense and fall into perfect sync, just like the electromagnetic waves emerging from an optical laser." Because the waves emerging from a laser pointer are in sync, the beam can travel a long distance without spreading in all directions - unlike light from the sun or from a light bulb. In a standard optical laser the properties of the light output are controlled by the material from which the laser is made. Interestingly, in the phonon laser the roles of light and matter are reversed - the motion of the material particle is now governed by the optical feedback. "We are very excited to see what the uses of this device are going to be - especially for sensing and information processing given that the optical laser has so many, and still evolving, applications," said Bhattacharya. He also said the phonon laser promises to enable the investigation of fundamental quantum physics, including engineering of the famous thought experiment of Schrodinger's cat, which can exist at two places simultaneously.
Physicists proposed fast method for printing nanolasers from rerovskites Saint Petersburg, Russia (SPX) Mar 14, 2019 An international research team has developed a new method of synthesizing miniature light sources. It is based on a special laser which produces millions of nanolasers from a perovskite film in a few minutes. Such lasers look like small disks, work at room temperature and have an tunable emission wavelength from 550 to 800 nm. The high speed and good reproducibility of this method make it promising for the industrial production of single nanolasers as well as whole chains. The study was published in ACS ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |