. 24/7 Space News .
EXO WORLDS
Rapid destruction of Earth-like atmospheres by young stars
by Staff Writers
Vienna, Austria (SPX) Apr 26, 2019

illustration only

The discoveries of thousands of planets orbiting stars outside our solar system has made questions about the potential for life to form on these planets fundamentally important in modern science.

Fundamentally important for the habitability of a planet is whether or not it can hold onto an atmosphere, which requires that the atmosphere is not completely lost early in the lifetime of the planet.

A new study by researchers based at the University of Vienna and at the Space Research Institute of the OAW in Graz has shown that young stars can rapidly destroy the atmospheres of potentially-habitable Earth-like planets, which is a significant additional difficulty for the formation of life outside our solar system. The results will appear soon in the journal Astronomy and Astrophysics Letters.

One of the most active and exciting questions in modern science is how abundant planets with Earth-like atmospheres and surface conditions and therefore the potential for harbouring life are in the universe.

Much recent research on this topic has focused on planets orbiting stars called M-dwarfs, which are smaller than our Sun and are the most numerous type of star in our solar system.

The primary driver of atmospheric losses to space is the central star that the planet is orbiting. Stars have strong magnetic fields, and these lead to the emission of high energy X-ray and ultraviolet radiation.

These phenomena are known collectively as the star's 'activity'. At young ages, stars have high levels of activity, and therefore emit extremely large amounts of X-rays and ultraviolet radiation.

As stars age, their activities decrease rapidly. Importantly for planets orbiting M-dwarfs, while the activities of stars like the Sun decrease rapidly after a few hundred million years, M-dwarfs often remain highly active for billions of years.

The high energy radiation is important because it is absorbed high in the atmosphere of a planet, causing the gas to be heated. For the Earth, the gas is heated to temperatures of more than 1000 degrees Celsius in the upper region known as the thermosphere. This is the region in which spacecraft such as satellites and the International Space Station fly.

When orbiting young stars with high activity levels, the thermospheres of planets are heated to much higher temperatures which in extreme cases can cause the gas to flow away from the planet. How rapidly atmospheres in these cases are lost has so far not been explored in detail for Earth-like planets with Earth-like atmospheres.

Researchers based at the University of Vienna and the Space Research Institute of the OAW in Graz have calculated for the first time how rapidly an Earth-like atmosphere would be lost from a planet orbiting a very active young star.

Their calculations have shown that extreme hydrodynamic losses of the atmosphere would take place, leading to an Earth-like atmosphere being entirely lost in less that one million years, which for the evolution of a planet is almost instantaneous.

These results have significant implications for the early evolution of the Earth and for the possibility of Earth-like atmospheres forming around M-dwarfs.

For the Earth, the most likely explanation for why the atmosphere was not lost is that the early atmosphere was dominated by carbon dioxide, which cools the upper atmosphere by emitting infrared radiation to space, thereby protecting it from the heating by the early Sun's high activity.

The Earth's atmosphere could not have become Nitrogen dominated, as it is today, until after several hundred million years when the Sun's activity decrease to much lower levels.

More dramatically, the results of this study imply that for planets orbiting M-dwarf, the planets can only form Earth-like atmospheres and surfaces after the activity levels of the stars decrease, which can take up to several billion years.

More likely is that many of the planets orbiting M-dwarf stars to have very thin or possible no atmospheres. In both cases, life forming in such systems appears less likely than previously believed.

Research paper: Extreme hydrodynamic losses of Earth-like atmospheres in the habitable zones of very active stars
Related Links
University of Vienna
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
Warwick UK (SPX) Apr 18, 2019
A stellar flare ten times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter. The star is the coolest and smallest to give off a rare white-light superflare, and by some definitions could be too small be considered a star. The discovery, funded by the Science and Technology Facilities Council, is published in the Monthly Notices of the Royal Astronomical Society: Letters as the version of record today (17 April) and sheds light on the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
RSC Energia developed a one-orbit rendezvous profile

NASA Aids Testing of Boeing Deep Space Habitat Ground Prototype in Alabama

International Space Station suffers partial power loss, no danger to crew

Photobioreactor: oxygen and a source of nutrition for astronauts

EXO WORLDS
NASA Says It Lost $700 Million in Failed Rocket Launches Due to Fraud Scheme

SLS Forward Join Set for Horizontal Assembly to Liquid Hydrogen Tank

SpaceX capsule was destroyed in 'anomaly': lawmaker

SpaceX Dragon cargo launch no earlier than May 3

EXO WORLDS
ESA to Lose Member State Support if ExoMars Launch Postponed - Director-General

InSight lander captures audio of first likely 'quake' on Mars

All-woman engineering team heads to NASA Mars competition

A small step for China: Mars base for teens opens in desert

EXO WORLDS
China's tracking ship Yuanwang-2 starts new mission after retirement

China to build moon station in 'about 10 years'

China to enhance international space cooperation

China opens Chang'e-6 for international payloads, asteroids next

EXO WORLDS
Capella Space ramping up production with Blue Canyon Technologies' Attitude Control Systems

Satellite Constellations and Radio Astronomy

Iridium Awarded Gateway Support and Maintenance Contract by the U.S. Department of Defense

The Third Installment of the SpaceFund Reality (SFR) rating

EXO WORLDS
Researchers discover surprising quantum effect in hard disk drive material

Flexible circuits for 3D printing

The first laser radio transmitter

Quantum gas turns supersolid

EXO WORLDS
Rapid destruction of Earth-like atmospheres by young stars

Cosmic dust reveals new insights on the formation of solar system

Slime mold memorizes foreign substances by absorbing them

Necrophagy: A means of survival in the Dead Sea

EXO WORLDS
Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.