. 24/7 Space News .
TECH SPACE
Synthesizing ammonia using less energy
by Staff Writers
Tokyo, Japan (SPX) Apr 28, 2020

Ammonia (NH3) is one of the most important industrial chemicals today, synthesized globally for use in fertilizers that then enable food production for approximately 70% of the world's population. Ammonia is currently obtained by reacting nitrogen (N2) from air with hydrogen (H2). This reaction requires high energy and is, therefore, powered by fossil fuels, contributing to over 3% of the global CO2 emissions.

Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed an improved catalyst by taking the common dehydrating agent calcium hydride and adding fluoride to it. The catalyst facilitates the synthesis of ammonia at merely 50C, by using only half the energy that existing techniques require. This opens doors to ammonia production with low energy consumption and reduced greenhouse gas emission.

Ammonia is a critical for making plant fertilizer, which in turn feeds approximately 70% of the world's population. In industries, ammonia is produced via the Haber-Bosch process, where methane is first reacted with steam to produce hydrogen, and hydrogen is then reacted with nitrogen to give ammonia. The problem with this process is that as the temperature increases, the yield decreases.

To continue to get a good yield, the pressure applied in the reaction chamber needs to be increased. This requires much energy. Further, the iron-based catalysts used for the reaction are only effective above 350C. Maintaining such high temperatures also requires a significant amount of energy. To top it all, the yield is only 30-40%.

Fossil fuels are currently used to power the process, contributing large amounts of carbon dioxide to the atmosphere. Renewable resource alternatives, such as wind energy, have been applied, but those have not proven sustainable. To increase the yield while reducing harm to the environment, therefore, the reaction must take place at low temperatures. For this to happen, catalysts that enable the reaction at low temperatures are required.

So far, such catalysts have been elusive to scientists. "Conventional catalysts lose the catalytic activity for ammonia formation from N2 and H2 gases at 100-200C, even if they exhibit high catalytic performance at high temperatures," remark a group of scientists from Tokyo Tech, Japan, who appear to have finally solved the catalyst problem. The scientists, led by Dr.Michikazu Hara, developed a catalyst that is effective even at 50C.

"Our catalyst produces ammonia from N2 and H2 gases at 50 C with an extremely small activation energy of 20 kJmol-1, which is less than half that reported for conventional catalysts," Dr. Hara and colleagues report in their paper published in Nature Communications.

Their catalyst comprises a solid solution of CaFH, with ruthenium (Ru) nanoparticles deposited on its surface. The addition of fluoride (F-) to calcium hydride (CaH2), a common dehydrating agent, is what makes the catalyst effective at lower temperatures and pressures. After conducting spectroscopic and computational analyses, the scientists propose a possible mechanism by which the catalyst facilitates ammonia production.

The calcium-fluoride (Ca-F) bond is stronger than the calcium-hydrogen (Ca-H) bond. So, the presence of the Ca-F bond weakens the Ca-H bond and the Ru is able to extract H atoms from the catalyst crystal, leaving electrons in their place. The H atoms then desorb from the Ru nanoparticles as H2 gas.

This occurs even at 50C. The resultant charge repulsion between the trapped electrons and F- ions in the crystal lower the energy barriers for these electrons to release, thereby giving the material high electron-donating capacity. These released electrons attack the bonds between the nitrogen atoms in the N2 gas, facilitating the production of ammonia.

This new method of ammonia production cuts energy demands, thereby reducing the carbon dioxide emissions from the use of large amounts of fossil fuels. The findings of this study illuminate the possibility of an environmentally sustainable Haber-Bosch process, opening the door to the next revolution in agricultural food production.

Research paper


Related Links
Tokyo Institute Of Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Cool down fast to advance quantum nanotechnology
Vienna, Austria (SPX) Apr 22, 2020
The team, led by physicists at the Technische Universitat Kaiserslautern (TUK) in Germany and University of Vienna in Austria, generated the Bose-Einstein condensate (BEC) through a sudden change in temperature: first heating up quasi-particles slowly, then rapidly cooling them down back to room temperature. They demonstrated the method using quasi-particles called magnons, which represent the quanta of magnetic excitations of a solid body. "Many researchers study different types of Bose-Einstein ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA researchers look to the future on Earth Day 50

Space Station science payload operations continue amid pandemic

Space tourists will celebrate New Year 2022 in orbit for first time

NASA Astronauts Meir, Morgan, Crewmate Skripochka Return from Space Station

TECH SPACE
NASA, SpaceX to Launch First Astronauts to Space Station from U.S. Since 2011

Scientific machine learning paves way for rapid rocket engine design

NASA announces first SpaceX crewed flight for May 27

US Rocketry Chief Offers Novel Explanation for Why America Continues to Buy Russia's RD-180 Engines

TECH SPACE
Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

TECH SPACE
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

TECH SPACE
SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

NewSpace Philosophies: Who, How, What?

OneWeb goes bankrupt

TECH SPACE
Sensors woven into a shirt can monitor vital signs

Now metal surfaces can be instant bacteria killers

Cool down fast to advance quantum nanotechnology

Intelsat 901 Satellite Returns to Service Using Northrop Grumman's Mission Extension Vehicle

TECH SPACE
Astronomers discover planet that never was

CHEOPS space telescope ready for scientific operation

HD 158259 and it's six planets almost in rhythm

Simulating early ocean vents shows life's building blocks form under pressure

TECH SPACE
New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.