. | . |
Cool down fast to advance quantum nanotechnology by Staff Writers Vienna, Austria (SPX) Apr 22, 2020
The team, led by physicists at the Technische Universitat Kaiserslautern (TUK) in Germany and University of Vienna in Austria, generated the Bose-Einstein condensate (BEC) through a sudden change in temperature: first heating up quasi-particles slowly, then rapidly cooling them down back to room temperature. They demonstrated the method using quasi-particles called magnons, which represent the quanta of magnetic excitations of a solid body. "Many researchers study different types of Bose-Einstein condensates," said Professor Burkard Hillebrands from TUK, one of the leading researchers in the field of BEC. "The new approach we developed should work for all systems."
Puzzling and spontaneous Creating Bose-Einstein condensates is tricky business because, by definition, they have to occur spontaneously. Setting up the right conditions to generate the condensates means not trying to introduce any kind of order or coherence to encourage the particles to behave the same way; the particles have to do that themselves. Currently, Bose-Einstein condensates are formed by decreasing the temperature to near absolute zero, or by injecting a large number of particles at room temperature into a small space. However, the room temperature method, which was first reported by Hillebrands and collaborators in 2005, is technically complex and only a few research teams around the world have the equipment and know-how required. The new method is much simpler. It requires a heating source, and a tiny magnetic nanostructure, measuring a hundred times smaller than the thickness of a human hair. "Our recent progress in the miniaturization of magnonic structures to nanoscopic scale allowed us to address BEC from completely different perspective," said Professor Andrii Chumak from the University of Vienna. The nanostructure is heated up slowly to 200 C to generate phonons, which in turn generate magnons of the same temperature. The heating source is turned off, and the nanostructure rapidly cools down to room temperature in about a nanosecond. When this happens, the phonons escape to the substrate, but the magnons are too slow to react, and remain inside the magnetic nanostructure. Michael Schneider, lead paper author and a PhD student in TUK'S Magnetism Research Group, explained why this happens: "When the phonons escape, the magnons want to reduce energy to stay in equilibrium. Since they cannot decrease the number of particles, they have to decrease energy in some other way. So, they all jump down to the same low energy level." By spontaneously all occupying the same energy level, the magnons form a Bose-Einstein condensate. "We never introduced coherence in the system," Chumak said, "so this is a very pure and clear way to create Bose-Einstein condensates."
Unexpected result "At first we thought something was really wrong with our experiment or data analysis," Schneider said. After discussing the project with collaborators at TUK and in the U.S., they tweaked some experimental parameters to see if the strange thing was in fact a Bose-Einstein condensate. They verified its presence with spectroscopy techniques. The finding will primarily interest other physicists studying this state of matter. "But revealing information about magnons and their behavior in a form of macroscopic quantum state at room temperature could have bearing on the quest to develop computers using magnons as data carriers," Hillebrands said. Chumak stressed the importance of the collaboration within TUK'S OPTIMAS Research Group towards solving the mystery. Combining his team's expertise in magnonic nanostructures with Hillebrand's expertise in magnon Bose-Einstein condensates was essential. Their research has received significant support from two European Research Council (ERC) grants.
Research Report: "Bose-Einstein Condensation of Quasi-Particles by Rapid Cooling"
Now metal surfaces can be instant bacteria killers West Lafayette IN (SPX) Apr 13, 2020 Bacterial pathogens can live on surfaces for days. What if frequently touched surfaces such as doorknobs could instantly kill them off? Purdue University engineers have created a laser treatment method that could potentially turn any metal surface into a rapid bacteria killer - just by giving the metal's surface a different texture. In a study published in the journal Advanced Materials Interfaces, the researchers demonstrated that this technique allows the surface of copper to immediately k ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |