. 24/7 Space News .
EXO WORLDS
Simulating early ocean vents shows life's building blocks form under pressure
by Staff Writers
Pasadena CA (JPL) Apr 16, 2020

A seafloor vent called a "white smoker" spews mineral-rich water into the ocean and serves as an energy hub for living creatures. Some scientists think life on Earth may have begun around similar vents on the ocean floor billions of years ago.

Where did life first form on Earth? Some scientists think it could have been around hydrothermal vents that may have existed at the bottom of the ocean 4.5 billion years ago. In a new paper in the journal Astrobiology, scientists at NASA's Jet Propulsion Laboratory describe how they mimicked possible ancient undersea environments with a complex experimental setup. They showed that under extreme pressure, fluid from these ancient seafloor cracks mixed with ocean water could have reacted with minerals from the hydrothermal vents to produce organic molecules - the building blocks that compose nearly all life on Earth.

In particular, the research lays important groundwork for in-depth studies of such ocean worlds as Saturn's moon Enceladus and Jupiter's moon Europa, which are both thought to have liquid-water oceans buried beneath thick icy crusts and may host hydrothermal activity similar to what's being simulated at JPL. This area of research belongs to a field of study known as astrobiology, and the work was done by the JPL Icy Worlds team as part of the former NASA Astrobiology Institute.

Under the Ancient Sea
To simulate conditions that might have existed on the ocean floor of a newly formed Earth, before the sea teemed with life, then-graduate student Lauren White and colleagues conducted an experiment that brought together three key ingredients: hydrogen-rich water, like the kind that could have flowed out from beneath the seafloor through vents; seawater enriched with carbon dioxide, as it would have been from the ancient atmosphere; and a few minerals that might have formed in that environment.

White and colleagues - including her graduate advisor, retired JPL scientist Michael Russell - simulated vents that didn't spew particularly hot water (it was only about 212 Fahrenheit, or 100 degrees Celsius). One major challenge with creating the experimental setup was maintaining the same pressure found 0.6 miles (1 kilometers) below the ocean surface - about 100 times the air pressure at sea level.

Previous experiments have tested similar chemical reactions in individual high-pressure chambers, but White and her colleagues wanted to more fully replicate the physical properties of these environments, including the way the fluids flow and mix together. This would require maintaining the high pressure in multiple chambers, which added to the complexity of the project. (Because a crack or leak in even a single high-pressure chamber poses the threat of an explosion, it's standard operating procedure in such cases to install a blast shield between the apparatus and the scientists.)

The scientists wanted to determine whether such ancient conditions could have produced organic molecules - those containing carbon atoms in loops or chains, as well as with other atoms, most commonlyhydrogen. Examples of complex organic molecules include amino acids, which can eventually form DNA and RNA.

But just as eggs, flour, butter and sugar aren't the same thing as a cake, the presence of both carbon and hydrogen in the early oceans doesn't guarantee the formation of organic molecules. While a carbon and a hydrogen atom might reasonably bump into each other in this prehistoric ocean, they wouldn't automatically join to form an organic compound. That process requires energy, and just like a ball won't roll up a hill by itself, carbon and hydrogen won't bind together without an energetic push.

A previous study by White and her colleagues showed that water pulsing through hydrothermal vents could have formed iron sulfides. By acting as a catalyst, iron sulfides could provide that energetic push, lowering the amount of energy required for carbon and hydrogen to react together, and increasing the likelihood they would form organics.

The new experiment tested whether this reaction would have been likely to occur under the physical conditions around ancient seafloor vents, if such vents existed at the time. The answer? Yes. The team created formate and trace amounts of methane, both organic molecules.

Signs of Life
Naturally occurring methane on Earth is produced largely by living organisms or through the decay of biological material, including plants and animals. Could methane on other planets also be a sign of biological activity? To use methane to search for life on other worlds, scientists need to understand both its biological and non-biological sources, such as the one identified by White and her colleagues.

"I think it's really significant that we showed that these reactions take place in the presence of those physical factors, like the pressure and the flow," said White. "We are still a long way from demonstrating that life could have formed in these environments. But if anyone ever wants to make that case, I think we'll need to have demonstrated the feasibility of every step of the process; we can't take anything for granted."

The work builds on Michael Russell's hypothesis that life on Earth may have formed at the bottom of Earth's early ocean. The formation of organic molecules would be a major step in this process. Scientists in the same JPL research group have explored other aspects of this work, such as replicating the chemical conditions in the early ocean to demonstrate how amino acids might form there. However, the new study is unique in the way it re-created the physical conditions of those environments.

In the next few years, NASA will launch Europa Clipper, which will orbit Jupiter and perform multiple flybys of the icy moon Europa. Scientists believe plumes there may spew water into space from the moon's ocean, which lies beneath about 2 to 20 miles (3 to 30 kilometers) of ice.

These plumes could provide information about possible hydrothermal processes at the bottom of the ocean, thought to be about 50 miles (80 kilometers) deep. The new paper contributes to a growing understanding of the chemistry that might take place in oceans other than our own, which will help scientists interpret findings of that mission and others to come.

For more information on astrobiology at NASA, visit here


Related Links
JPL Icy Worlds team
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Sellafield research uncovers microbial life in fuel ponds
Manchester UK (SPX) Apr 08, 2020
Two new research papers from The University of Manchester, working with colleagues at Sellafield Limited and the National Nuclear Laboratory show that microbes can actively colonise some of the most intensively radioactive waste storage sites in Europe. When nuclear facilities such as Sellafield were designed and built more than 50 years ago, it was sensible to assume that the conditions in the pond would prevent microbial life from taking hold, but now new research shows that this is not the case ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Insects, seaweed and lab-grown meat could be the foods of the future

ISS Nat Lab issues RFPs to leverage external facility for materials/device testing

NASA astronaut Chris Cassidy, crewmates arrive safely at ISS

Bartolomeo connected to Columbus

EXO WORLDS
Pandemic delays New Zealand launch of three US Intel satellites

Dragon returns to Earth with science payloads from ISS

Space Force announces its first pandemic-related launch delay

SpaceX's Dragon splashes down after trip to space station

EXO WORLDS
Choosing rocks on Mars to bring to Earth

NASA's Perseverance Mars rover gets its wheels and air brakes

Bacteria in rock deep under sea inspire new search for life on Mars

The man who wanted to fly on Mars

EXO WORLDS
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

EXO WORLDS
Hong Kong Aerospace Technology Group prepares to launch their first satellite "Golden Bauhinia"

OneWeb goes bankrupt

Trump issues Executive Order supporting Space Resources utlization

Space missions return to science

EXO WORLDS
Scientists in Japan develop decomposable plastic

Supporting small airports using virtual reality

Russian cosmonauts begin 3D bioprinting experiment on ISS

Scientists synthesize world's most complex microparticle

EXO WORLDS
Sellafield research uncovers microbial life in fuel ponds

Salmon parasite is world's first non-oxygen breathing animal

Humans are not the first to repurpose CRISPR

Sulfur 'spices' alien atmospheres

EXO WORLDS
Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.