. | . |
Sensors woven into a shirt can monitor vital signs by Anne Trafton | MIT News Boston MA (SPX) Apr 24, 2020
MIT researchers have developed a way to incorporate electronic sensors into stretchy fabrics, allowing them to create shirts or other garments that could be used to monitor vital signs such as temperature, respiration, and heart rate. The sensor-embedded garments, which are machine washable, can be customized to fit close to the body of the person wearing them. The researchers envision that this type of sensing could be used for monitoring people who are ill, either at home or in the hospital, as well as athletes or astronauts. "We can have any commercially available electronic parts or custom lab-made electronics embedded within the textiles that we wear every day, creating conformable garments," says Canan Dagdeviren, the LG Electronics Career Development Assistant Professor of Media Arts and Sciences at MIT. "These are customizable, so we can make garments for anyone who needs to have some physical data from their body like temperature, respiration rate, and so forth." Dagdeviren is the senior author of a paper describing the new material in the journal npg Flexible Electronics. MIT graduate student Irmandy Wicaksono is the lead author of the study. Several MIT undergraduates also contributed to the study through the Undergraduate Research Opportunities Program.
Embedded sensors "In our case, the textile is not electrically functional. It's just a passive element of our garment so that you can wear the devices comfortably and conformably during your daily activities," Dagdeviren says. "Our main goal was to measure the physical activity of the body in terms of temperature, respiration, acceleration, all from the same body part, without requiring any fixture or any tape." The electronic sensors consist of long, flexible strips that are encased in epoxy and then woven into narrow channels in the fabric. These channels have small openings that allow the sensors to be exposed to the skin. For this study, the researchers designed a prototype shirt with 30 temperature sensors and an accelerometer that can measure the wearer's movement, heart rate, and breathing rate. The garment can then transmit this data wirelessly to a smartphone. The researchers chose their fabric - a polyester blend - for its moisture-wicking properties and its ability to conform to the skin, similar to compression shirts worn during exercise. Last summer, several of the researchers spent time at a factory in Shenzhen, China, to experiment with mass-producing the material used for the garments. "From the outside it looks like a normal T-shirt, but from the inside, you can see the electronic parts which are touching your skin," Dagdeviren says. "It compresses on your body, and the active parts of the sensors are exposed to the skin." The garments can be washed with the sensors embedded in them, and the sensors can also be removed and transferred to a different garment.
Remote monitoring The shirts can be easily manufactured in different sizes to fit an array of ages and body types, Dagdeviren says. She plans to begin developing other types of garments, such as pants, and is working on incorporating additional sensors for monitoring blood oxygen levels and other indicators of health. This kind of sensing could be useful for personalized telemedicine, allowing doctors to remotely monitor patients while patients remain at home, Dagdeviren says, or to monitor astronauts' health while they're in space. "You don't need to go to the doctor or do a video call," Dagdeviren says. "Through this kind of data collection, I think doctors can make better assessments and help their patients in a better way." The research was funded by the MIT Media Lab Consortium and a NASA Translational Research Institute for Space Health Seed Grant from the MIT Media Lab Space Exploration Initiative. + Video: Electronic Textile Conformable Suit (E-TeCS)
Cool down fast to advance quantum nanotechnology Vienna, Austria (SPX) Apr 22, 2020 The team, led by physicists at the Technische Universitat Kaiserslautern (TUK) in Germany and University of Vienna in Austria, generated the Bose-Einstein condensate (BEC) through a sudden change in temperature: first heating up quasi-particles slowly, then rapidly cooling them down back to room temperature. They demonstrated the method using quasi-particles called magnons, which represent the quanta of magnetic excitations of a solid body. "Many researchers study different types of Bose-Einstein ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |