. | . |
Smartphone technology provides satellites with increased computing power by Staff Writers Braunschweig, Germany (SPX) Jun 14, 2022
Reliable and powerful computers play a central role in spaceflight - for example, computer systems in satellites enable sophisticated Earth observation missions. The German Aerospace Center is developing a new computer architecture that will provide On-Board Computers (OBCs) with more power as well as enabling them to repair themselves. Distributed heterogeneous OBCs are being created in the Scalable On-Board Computing for Space Avionics (ScOSA) flight experiment project. They feature different computing nodes that are connected to form a network. A general challenge for computer systems in satellites is that cosmic radiation can interfere with their operation. "If a radiation particle impacts a digital memory element, it might turn a zero into a one," explains Project Manager Daniel Ludtke from the DLR Institute for Software Technology in Braunschweig. Ultimately, the system can even fail or deliver incorrect results. For this reason, radiation-hardened processors are available for use in space. However, these are very expensive and have only limited computing power. On the other hand, processors such as those used for smartphones are very powerful and also much cheaper. They are, however, much more vulnerable to space radiation. ScOSA integrates both types of processors in one system.
Testing on the OPS-SAT satellite in low-Earth orbit An experiment on the European Space Agency (ESA) OPS-SAT satellite has now shown that this works. "The satellite, which is 30 by 10 by 10 centimetres in size and contains an experimental computer, has been in low-Earth orbit since the end of 2019. OPS-SAT is available to researchers as a fully equipped and open platform," explains David Evans, ESA Project Lead for the mission. The DLR researchers installed and successfully tested the ScOSA software on OPS-SAT together with ESA. To do this, the satellite acquired Earth observation images, then processed and evaluated them using artificial intelligence. The satellite then only transmitted the viable images to a ground station. "Sensors with increasingly high resolutions and complex algorithms require more and more computing power," says Daniel Ludtke, summarising the requirements for software and hardware. A larger ScOSA system consisting of radiation-hardened and commercially available processors will soon be tested on a dedicated DLR CubeSat. This small satellite is expected to be launched at the end of 2023.
SEAKR Engineering Demonstrates Optical Communications on DARPA's Mandrake 2 Satellites Centennial CO (SPX) Jun 09, 2022 SEAKR Engineering, LLC, a wholly-owned subsidiary of Raytheon Technologies, announced a successful demonstration of optical inter-satellite links between two Defense Advanced Research Projects Agency Mandrake 2 satellites. During the first test, more than 280 gigabits of data were transferred at a range of 114 kilometers during a period of more than 40 minutes. "This was a demonstration not only of optical communications in space but also a closer look at some of the foundational building blocks n ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |