. 24/7 Space News .
ENERGY TECH
Researchers visualize bacteria motor in first step toward human-produced electrical energy
by Staff Writers
Tokyo, Japan (SPX) Nov 22, 2019

This is the crystal structure of the molecular motor V1

Humans, one day, may be able to produce their own electrical energy in the same way electric eels do, according to a research team based in Japan. It's the ultimate goal that begins with understanding precisely how tiny "motors" inside bacteria maintain biological balance.

The researchers specifically focused on a rotational motor dubbed V1 that functions as part of a pump that moves sodium ions across the membrane as a part of healthy cellular processes. They published their results in Journal of Biological Chemistry online on Sept. 13 and in the print edition on Nov. 8.

"Energy conversion efficiency of rotary molecular motor is much higher than that of man-made motors," said Ryota Iino, paper author and researcher with the Institute for Molecular Science of the National Institutes of Natural Sciences and the Department of Functional Molecular Science in the School of Physical Sciences at the Graduate University for Advanced Studies.

"And energy conversion by rotary molecular motor is reversible. If we completely understand the mechanism, it will lead to the realization of highly efficient, man-made motors in the future."

In order to understand the mechanism, the researchers used a gold nanoparticle probe to directly observe a single molecules purified from bacteria- Enterococcus hirae, which can cause sepsis in humans. By imaging a single molecule at such a high resolution, the researchers could observe its behavior over time and determine how the motor rotated for different sections to interact with various inputs.

Much like a well pump that a person must crank to get the water to flow upward, against gravity, the observed molecular pump must take some input of energy to generate more energy to transport ions against the gradient of the bacterial membrane. The energy the human puts into the hand pump is limited, but the interaction is heavy, compared to the amount of energy it takes for the water to flow upwards.

"We started out by working to understand how chemical energy is converted to the mechanical rotation of the V1 motor," Iino said. "We found that while the three-dimensional structures of V1 and related rotary motors are similar, their chemical and mechanical coupling mechanisms are very different, suggesting that cellular functions dictated the evolution of different functional mechanisms."

With this study, the researchers have a better understanding of how the V1 motor forms a complex with another rotary motor called Vo to actively pump sodium ions across the cellular membrane.

In other words, the motor complex uses chemical energy from the cell to mechanically rotate and convert the energy into electrochemical potential - much like a human uses energy gained from food to muscle a well pump, resulting in the generated energy of the water flow.

"Next, we would like to understand exactly how the energy conversion mechanism of the motor complex works," Iino said.

According to Iino, electric eels generate electric energy from chemical energy with a mechanism similar to the motor complex in this study.

"If we can fully understand this mechanism, it may be possible to develop a battery capable of the energy conversion to implant in an artificial electric eel or even in a human," Iino said.

Research paper


Related Links
National Institutes of Natural Sciences
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
New material breaks world record turning heat into electricity
Vienna, Austria (SPX) Nov 18, 2019
Thermoelectric materials can convert heat into electrical energy. This is due to the so-called Seebeck effect: If there is a temperature difference between the two ends of such a material, electrical voltage can be generated and current can start to flow. The amount of electrical energy that can be generated at a given temperature difference is measured by the so-called ZT value: The higher the ZT value of a material, the better its thermoelectric properties. The best thermoelectrics to date were ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
UAE's first astronaut urges climate protection on Earth

Final spacewalk preps during biology, physics studies on ISS

Scarier than fiction: climate worry driving 'cli-fi' boom

Commerce leaders introduce the NASA Authorization Act of 2019

ENERGY TECH
Thruster for next-generation spacecraft undergoes testing at Glenn

SpaceX Completes Crew Dragon Static Fire Tests

Not your average rocket launch; 45th SW supports Pegasus ICON

ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

ENERGY TECH
China completes Mars lander test ahead of 2020 mission

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

ESA's Mars orbiters did not see latest Curiosity methane burst

With Mars methane mystery unsolved, Curiosity serves scientists a new one: oxygen

ENERGY TECH
China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

ENERGY TECH
Space Talks 2019: bringing space to you

EU must boost spending in space or be squeezed out: experts

SpaceX faces competitors in race to build Internet-satellite constellation

SpaceX launches Starlink satellites with first reused rocket nose

ENERGY TECH
Turning up the heat to create new nanostructured metals

A four-way switch promises greater tunability of layered materials

Artificial intelligence to run the chemical factories of the future

Research reveals new state of matter with a Cooper pair metal

ENERGY TECH
Making planets in a rocket

Distant worlds under many suns

Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

ENERGY TECH
NASA finds Neptune moons locked in 'Dance of Avoidance'

New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'

NASA renames faraway ice world 'Arrokoth' after backlash

Juice cast in gold









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.