. 24/7 Space News .
Juice cast in gold
by Staff Writers
Paris (ESA) Nov 05, 2019

This model of Juice was built by the Technical University of Dresden, Germany, and the tests were performed by the Austrian Academy of Sciences' Space Research Institute in Graz, Austria, as part of a project financed by the Austrian Research Promotion Agency (FFG). The lead scientist for the calibration effort was Georg Fischer of the Space Research Institute, also using computer simulations performed by Mykhaylo Panchenko.

In a decade's time, an exciting new visitor will enter the Jovian system: ESA's Jupiter Icy Moons Explorer, or Juice. As its name suggests, the mission will explore Jupiter and three of its largest moons - Ganymede, Callisto and Europa - to investigate the giant planet's cosmic family and gas giant planets in general.

Juice is planned for launch in 2022, and its instruments are currently being perfected and calibrated so they are ready to start work once in space. This image shows one of the many elements involved in this calibration process: a miniature gold-plated metallic model of Juice used to test the spacecraft's antennas.

Juice will carry multiple antennas to detect radio waves in the Jupiter system. These antennas will measure the characteristics of the incoming waves, including the direction in which they are moving and their degree of polarisation, and then use this information to trace the waves back to their sources. In order to do this, the antennas must work well regardless of their orientation to any incoming waves - and so scientists must figure out and correct for the antennas' so-called 'directional dependence'.

This shiny model was used to perform a set of tests on Juice's Radio and Plasma Wave Instrument (RPWI) last year. It was submerged in a tank filled with water; an even electric field was then applied to the tank, and the model was moved and rotated with respect to this field. The results revealed how the antennas will receive radio waves that stream in from different directions and orientations with respect to the spacecraft, and will enable the instrument to be calibrated to be as effective as possible in its measurements of Jupiter and its moons.

Similar tests, which are technically referred to as rheometry, were conducted in the past for spacecraft including the NASA/ESA/ASI Cassini-Huygens mission to Saturn (which operated at Saturn between 2004 and 2017), NASA's Juno spacecraft (currently in orbit around Jupiter), and ESA's Solar Orbiter (scheduled for launch in early 2020 to investigate the Sun up close).

The test performed for Juice posed a few additional hurdles - the model's antennas were especially small and needed to be fixed accurately onto the model's boom, which required scientists to create a special device to adjust not only the antennas, but also the boom itself.

The model was produced at a 1:40 scale, making each antenna 62.5 millimetres long from tip to tip; scaled up, the antennas will be 2.5 metres long on Juice. The main spacecraft parts modelled here include the body of the probe itself, its solar panels, and its antennas and booms.

The model has an overall 'wingspan' of 75 centimetres across its solar panels. The photo also shows a spacecraft stand, which extends out of the bottom of the frame. The gold coating ensured that the model had excellent electric conducting properties, and reacted minimally with the surrounding water and air during the measurements.

Meanwhile, the assembly of the Juice flight model has started in September, with the delivery of the spacecraft's primary structure, followed by integration of the propulsion system.

Related Links
The million outer planets of a star called Sol

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

NASA's Juno prepares to jump Jupiter's shadow
Pasadena CA (JPL) Oct 02, 2019
Last night, NASA's Juno mission to Jupiter successfully executed a 10.5-hour propulsive maneuver - extraordinarily long by mission standards. The goal of the burn, as it's known, will keep the solar-powered spacecraft out of what would have been a mission-ending shadow cast by Jupiter on the spacecraft during its next close flyby of the planet on Nov. 3, 2019. Juno began the maneuver yesterday, on Sept. 30, at 7:46 p.m. EDT (4:46 p.m. PDT) and completed it early on Oct. 1. Using the spacecraft's r ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Astronaut smart glove to explore the Moon, Mars and beyond

Antares rocket launches in ISS resupply mission

A series of spacewalks four years in the making will attempt to revive a scientific experiment

Indian Space Station to Have Room for Three Astronauts, Says Space Research Body

NKorea conducts new test of 'super-large' rocket launcher: KCNA

US Air Force hosts hypersonics pitch day

NASA science, cargo heads to Space Station on Northrop Grumman mission

ESA and GomSpace sign contract to develop miniaturized electric propulsion system

Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

SpaceX to launch 42,000 satellites

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

European network of operations centres takes shape

New printer creates extremely realistic colorful holograms

NASA Microgap-Cooling technology immune to gravity effects and ready for spaceflight

OMG developing new standard for interface for Software Defined Radios

Invention of shape-changing textiles powered only by body heat

A new spin on life's origin?

Worldwide observations confirm nearby 'lensing' exoplanet

Even 'goldilocks' exoplanets need a well-behaved star

Simulations explain giant exoplanets with eccentric, close-in orbits

SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.