. 24/7 Space News .
ENERGY TECH
New material breaks world record turning heat into electricity
by Staff Writers
Vienna, Austria (SPX) Nov 18, 2019

This is professor Ernst Bauer in his lab.

Thermoelectric materials can convert heat into electrical energy. This is due to the so-called Seebeck effect: If there is a temperature difference between the two ends of such a material, electrical voltage can be generated and current can start to flow. The amount of electrical energy that can be generated at a given temperature difference is measured by the so-called ZT value: The higher the ZT value of a material, the better its thermoelectric properties.

The best thermoelectrics to date were measured at ZT values of around 2.5 to 2.8. Scientists at TU Wien (Vienna) have now succeeded in developing a completely new material with a ZT value of 5 to 6. It is a thin layer of iron, vanadium, tungsten and aluminium applied to a silicon crystal.

The new material is so effective that it could be used to provide energy for sensors or even small computer processors. Instead of connecting small electrical devices to cables, they could generate their own electricity from temperature differences. The new material has now been presented in the journal Nature.

Electricity and Temperature
"A good thermoelectric material must show a strong Seebeck effect, and it has to meet two important requirements that are difficult to reconcile," says Prof. Ernst Bauer from the Institute of Solid State Physics at TU Wien. "On the one hand, it should conduct electricity as well as possible; on the other hand, it should transport heat as poorly as possible. This is a challenge because electrical conductivity and thermal conductivity are usually closely related."

At the Christian Doppler Laboratory for Thermoelectricity, which Ernst Bauer established at TU Wien in 2013, different thermoelectric materials for different applications have been studied over the last few years. This research has now led to the discovery of a particularly remarkable material - a combination of iron, vanadium, tungsten and aluminium.

"The atoms in this material are usually arranged in a strictly regular pattern in a so-called face-centered cubic lattice," says Ernst Bauer. "The distance between two iron atoms is always the same, and the same is true for the other types of atoms. The whole crystal is therefore completely regular".

However, when a thin layer of the material is applied to silicon, something amazing happens: the structure changes radically. Although the atoms still form a cubic pattern, they are now arranged in a space-centered structure, and the distribution of the different types of atoms becomes completely random. "Two iron atoms may sit next to each other, the places next to them may be occupied by vanadium or aluminum, and there is no longer any rule that dictates where the next iron atom is to be found in the crystal," explains Bauer.

This mixture of regularity and irregularity of the atomic arrangement also changes the electronic structure, which determines how electrons move in the solid. "The electrical charge moves through the material in a special way, so that it is protected from scattering processes. The portions of charge travelling through the material are referred to as Weyl Fermions," says Ernst Bauer. In this way, a very low electrical resistance is achieved.

Lattice vibrations, on the other hand, which transport heat from places of high temperature to places of low temperature, are inhibited by the irregularities in the crystal structure. Therefore, thermal conductivity decreases. This is important if electrical energy is to be generated permanently from a temperature difference - because if temperature differences could equilibrate very quickly and the entire material would soon have the same temperature everywhere, the thermoelectric effect would come to a standstill.

Electricity for the Internet of Things
"Of course, such a thin layer cannot generate a particularly large amount of energy, but it has the advantage of being extremely compact and adaptable," says Ernst Bauer. "We want to use it to provide energy for sensors and small electronic applications."

The demand for such small-scale generators is growing quickly: In the "Internet of Things", more and more devices are linked together online so that they automatically coordinate their behavior with each other. This is particularly promising for future production plants, where one machine has to react dynamically to another.

"If you need a large number of sensors in a factory, you can't wire all of them together. It's much smarter for the sensors to be able to generate their own power using a small thermoelectric device," says Bauer.

Research paper


Related Links
Vienna University of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
New exploration method for geothermal energy
Potsdam, Germany (SPX) Nov 15, 2019
Where to drill? This is the basic question in the exploration of underground energy resources, such as geothermal energy. Water in rocks flows along permeable pathways, which are the main target for geothermal drilling. Borehole, core and micro-earthquake data show that the pathways are spatially connected, permeable structures, such as fractures or faults in the rock. However, the geothermal potential of these structures cannot be fully exploited with the techniques available to date. A res ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Are we set to taste space wine

Cygnus NG-12 cargo vehicle looking good on arrival

Paragon wins $2M contract under NASA Tipping Point Program

Virgin Galactic's high-risk space adventure will likely pay off

ENERGY TECH
Not your average rocket launch; 45th SW supports Pegasus ICON

ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

All four engines are attached to the SLS Core Stage for Artemis I

Advanced electric propulsion thruster for NASA's Gateway achieves full power demonstration

ENERGY TECH
The Mars Mole and the challenging ground of the Red Planet

Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

ENERGY TECH
Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

ENERGY TECH
European network of operations centres takes shape

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

SpaceX to launch 42,000 satellites

ENERGY TECH
Artificial intelligence to run the chemical factories of the future

Asian-backed consortium wins massive iron ore deal in Guinea

Theoretical tubulanes inspire ultrahard polymers

Multimaterial 3D printing manufactures complex objects, fast

ENERGY TECH
Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

The most spectacular celestial vision you'll never see

ENERGY TECH
Juice cast in gold

SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.