24/7 Space News
CARBON WORLDS
Researchers demo new type of carbon nanotube yarn that harvests mechanical energy
stock image only
ADVERTISEMENT
     
Researchers demo new type of carbon nanotube yarn that harvests mechanical energy
by Staff Writers
Dallas TX (SPX) Jan 27, 2023

Nanotechnology researchers at The University of Texas at Dallas have made novel carbon nanotube yarns that convert mechanical movement into electricity more effectively than other material-based energy harvesters.

In a study published Jan. 26 in Nature Energy, UT Dallas researchers and their collaborators describe improvements to high-tech yarns they invented called "twistrons," which generate electricity when stretched or twisted. Their new version is constructed much like traditional wool or cotton yarns.

Twistrons sewn into textiles can sense and harvest human motion; when deployed in salt water, twistrons can harvest energy from the movement of ocean waves; and twistrons can even charge supercapacitors.

First described by UTD researchers in a study published in 2017 in the journal Science, twistrons are constructed from carbon nanotubes (CNTs), which are hollow cylinders of carbon 10,000 times smaller in diameter than a human hair. To make twistrons, the nanotubes are twist-spun into high-strength, lightweight fibers, or yarns, into which electrolytes can also be incorporated.

Previous versions of twistrons were highly elastic, which the researchers accomplished by introducing so much twist that the yarns coil like an overtwisted rubber band. Electricity is generated by the coiled yarns by repeatedly stretching and releasing them, or by twisting and untwisting them.

In the new study, the research team did not twist the fibers to the point of coiling. Instead, they intertwined three individual strands of spun carbon nanotube fibers to make a single yarn, similar to the way conventional yarns used in textiles are constructed - but with a different twist.

"Plied yarns used in textiles typically are made with individual strands that are twisted in one direction and then are plied together in the opposite direction to make the final yarn. This heterochiral construction provides stability against untwisting," said Dr. Ray Baughman, director of the Alan G. MacDiarmid NanoTech Institute at UT Dallas and the corresponding author of the study.

"In contrast, our highest-performance carbon-nanotube-plied twistrons have the same-handedness of twist and plying - they are homochiral rather than heterochiral," said Baughman, the Robert A. Welch Distinguished Chair in Chemistry in the School of Natural Sciences and Mathematics.

In experiments with the plied CNT yarns, the researchers demonstrated an energy conversion efficiency of 17.4% for tensile (stretching) energy harvesting and 22.4% for torsional (twisting) energy harvesting. Previous versions of their coiled twistrons reached a peak energy conversion efficiency of 7.6% for both tensile and torsional energy harvesting.

"These twistrons have a higher power output per harvester weight over a wide frequency range - between 2 Hz and 120 Hz - than previously reported for any non-twistron, material-based mechanical energy harvester," Baughman said.

Baughman said the improved performance of the plied twistrons results from the lateral compression of the yarn upon stretching or twisting. This process brings the plies in contact with one another in a way that affects the electrical properties of the yarn.

"Our materials do something very unusual," Baughman said. "When you stretch them, instead of becoming less dense, they become more dense. This densification pushes the carbon nanotubes closer together and contributes to their energy-harvesting ability. We have a large team of theorists and experimentalists trying to understand more completely why we get such good results."

The researchers found that constructing the yarn from three plies provided the optimal performance.

The team conducted several proof-of-concept experiments using three-ply twistrons. In one demonstration they simulated the generation of electricity from ocean waves by attaching a three-ply twistron between a balloon and the bottom of an aquarium filled with salt water. They also arranged multiple plied twistrons in an array weighing only 3.2 milligrams and repeatedly stretched them to charge a supercapacitor, which then had enough energy to power five small light-emitting diodes, a digital watch and a digital humidity/temperature sensor.

The team also sewed the CNT yarns into a cotton fabric patch that was then wrapped around a person's elbow. Electrical signals were generated as the person repeatedly bent their elbow, demonstrating the potential use of the fibers for sensing and harvesting human motion.

Research Report:Mechanical energy harvesters with tensile efficiency of 17.4% and torsional efficiency of 22.4% based on homochirally plied carbon nanotube yarns

Related Links
University of Texas at Dallas
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Scientists unveil least costly carbon capture system to date
Richland WA (SPX) Jan 26, 2023
The need for technology that can capture, remove and repurpose carbon dioxide grows stronger with every CO2 molecule that reaches Earth's atmosphere. To meet that need, scientists at the Department of Energy's Pacific Northwest National Laboratory have cleared a new milestone in their efforts to make carbon capture more affordable and widespread. They have created a new system that efficiently captures CO2-the least costly to date-and converts it into one of the world's most widely used chemicals: metha ... read more

ADVERTISEMENT
ADVERTISEMENT
CARBON WORLDS
UAE astronaut says not required to fast during Ramadan on ISS

Astronauts conduct first ISS spacewalk of 2023

Zero-Covid left in dust as Chinese revellers fuel travel boom

RIT scientists help rediscover earliest known star map using multispectral imaging

CARBON WORLDS
NASA validates revolutionary propulsion design for deep space missions

MIT Gas Turbine Laboratory prepares to jet into the future

Isar Aerospace and Spaceflight Inc sign launch agreement to service global market

NASA, DARPA will test nuclear engine for future Mars missions

CARBON WORLDS
Perseverance marks 1 Martian Year at Jezero

Sol 3721: Wrapping up at the Encanto Drill Site

NASA launches Mars Sample Receiving Project Office at Johnson

Sols 3718-3720: Go For Drilling at Encanto

CARBON WORLDS
Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

China's first private sector 2023 rocket launch up, up and away

CARBON WORLDS
SpaceX launches 56 more Starlink satellites in heaviest payload yet

Hawkeye 360 launches Cluster 6 satellites aboard inaugural Rocket Lab Electron flight from Virginia

UK Space Agency announces new funding for satellite communications

Britain's Tim Peake steps down from ESA astronaut corps

CARBON WORLDS
AI voice tool 'misused' as deepfakes flood web forum

Ghostly mirrors for high-power lasers

Judge denies US bid to block Meta virtual reality deal: reports

To decarbonize the chemical industry, electrify it

CARBON WORLDS
Webb Telescope identifies origins of icy building blocks of life

Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes

New small laser device can help detect signs of life on other planets

How do rocky planets really form

CARBON WORLDS
Webb spies Chariklo ring system with high-precision technique

Europe's JUICE spacecraft ready to explore Jupiter's icy moons

Exotic water ice contributes to understanding of magnetic anomalies on Neptune and Uranus

From Europe to Jupiter via Kourou

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.