. 24/7 Space News .
CHIP TECH
Quantum research unifies two ideas offering an alternative route to topological superconductivity
by Staff Writers
Copenhagen, Denmark (SPX) Apr 24, 2020

Hybrid material nanowires with pencil-like cross section (A) at low temperatures and finite magnetic field display zero-energy peaks (B) consistent with topological superconductivity as verified by numerical simulations (C).

A pencil shaped semiconductor, measuring only a few hundred nanometers in diameter, is what researches from the Center for Quantum Devices, Niels Bohr Institute, at University of Copenhagen, in collaboration with Microsoft Quantum researchers, have used to uncover a new route to topological superconductivity and Majorana zero modes in a study recently published in Science.

The new route that the researchers discovered uses the phase winding around the circumference of a cylindrical superconductor surrounding a semiconductor, an approach they call "a conceptual breakthrough".

"The result may provide a useful route toward the use of Majorana zero modes as a basis of protected qubits for quantum information. We do not know if these wires themselves will be useful, or if just the ideas will be useful," says Charles Marcus, Villum Kann Rasmussen Professor at the Niels Bohr Institute and Scientific Director of Microsoft Quantum Lab in Copenhagen.

What we have found appears to be a much easier way of creating Majorana zero modes, where you can switch them on and off, and that can make a huge difference.

says postdoctoral research fellow, Saulius Vaitiek?nas, who was the lead experimentalist on the study.

Two known ideas combined
The new research merges two already known ideas used in the world of quantum mechanics: Vortex-based topological superconductors and the one-dimensional topological superconductivity in nanowires.

"The significance of this result is that it unifies different approaches to understanding and creating topological superconductivity and Majorana zero modes," says professor Karsten Flensberg, Director of the Center for Quantum Devices.

Looking back in time, the findings can be described as an extension of a 50-year old piece of physics known as the Little-Parks effect. In the Little-Parks effect, a superconductor in the shape of a cylindrical shell adjusts to an external magnetic field, threading the cylinder by jumping to a "vortex state" where the quantum wavefunction around the cylinder carries a twist of its phase.

Charles M. Marcus, Saulius Vaitiek?nas, and Karsten Flensberg from the Niels Bohr Institute at the Microsoft Quantum Lab in Copenhagen.

What was needed was a special type of material that combined semiconductor nanowires and superconducting aluminum. Those materials were developed in the Center for Quantum Devices in the few years. The particular wires for this study were special in having the superconducting shell fully surround the semiconductor. These were grown by professor Peter Krogstrup, also at the Center for Quantum Devices and Scientific Director of the Microsoft Quantum Materials Lab in Lyngby.

The research is the result of the same basic scientific wondering that through history has led to many great discoveries.

Our motivation to look at this in the first place was that it seemed interesting and we didn't know what would happen. says Charles Marcus about the experimental discovery, which was confirmed theoretically in the same publication. Nonetheless, the idea may indicate a path forward for quantum computing.

Research paper


Related Links
University Of Copenhagen
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Organic memory devices show promise for flexible, wearable, personalized computing
Washington DC (SPX) Apr 22, 2020
The advent of artificial intelligence, machine learning and the internet of things is expected to change modern electronics and bring forth the fourth Industrial Revolution. The pressing question for many researchers is how to handle this technological revolution. "It is important for us to understand that the computing platforms of today will not be able to sustain at-scale implementations of AI algorithms on massive datasets," said Thirumalai Venkatesan, one of the authors of a paper published i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA researchers look to the future on Earth Day 50

Space Station science payload operations continue amid pandemic

Space tourists will celebrate New Year 2022 in orbit for first time

NASA Astronauts Meir, Morgan, Crewmate Skripochka Return from Space Station

CHIP TECH
NASA, SpaceX to Launch First Astronauts to Space Station from U.S. Since 2011

Scientific machine learning paves way for rapid rocket engine design

NASA announces first SpaceX crewed flight for May 27

US Rocketry Chief Offers Novel Explanation for Why America Continues to Buy Russia's RD-180 Engines

CHIP TECH
Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

CHIP TECH
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

CHIP TECH
SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

NewSpace Philosophies: Who, How, What?

OneWeb goes bankrupt

CHIP TECH
Sensors woven into a shirt can monitor vital signs

Best homemade mask combines cotton, natural silk, chiffon

Now metal surfaces can be instant bacteria killers

Cool down fast to advance quantum nanotechnology

CHIP TECH
Astronomers discover planet that never was

CHEOPS space telescope ready for scientific operation

HD 158259 and it's six planets almost in rhythm

Simulating early ocean vents shows life's building blocks form under pressure

CHIP TECH
New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.