. | . |
Nuclear engineering researchers develop new resilient oxide dispersion strengthened alloy by Staff Writers College Station TX (SPX) Mar 08, 2021
Texas A and M University researchers have recently shown superior performance of a new oxide dispersion strengthened (ODS) alloy they developed for use in both fission and fusion reactors. Dr. Lin Shao, professor in the Department of Nuclear Engineering, worked alongside research scientists at the Los Alamos National Laboratory and Hokkaido University to create the next generation of high-performance ODS alloys, and so far they are some of the strongest and best-developed metals in the field. ODS alloys consist of a combination of metals interspersed with small, nanometer-sized oxide particles and are known for their high creep resistance. This means that as temperatures rise, the materials keep their shape instead of deforming. Many ODS alloys can withstand temperatures up to 1,000 C and are typically used in power generation and engines within aerospace engineering, as well as cutlery. The nuclear community has a high need for reliable and durable materials to make up the core components of nuclear reactors. The material must be high strength, radiation tolerant and resistant to void swelling (materials develop cavities when subjected to neutron radiation, leading to mechanical failures). Nuclear researchers like Shao are consistently seeking to identify quality creep-resistant and swelling-resistant materials for their use in high-temperature reactors. "In general, ODS alloys should be resistant to swelling when exposed to extreme neutron irradiation," said Shao. "However, the majority of commercial ODS alloys are problematic from the beginning." This is because almost all commercial ODS alloys are based on the ferritic phase. Ferritic alloys, classified by their crystalline structure and metallurgical behavior, have good ductility and reasonable high-temperature strength. However, the ferritic phase is the weakest phase when judged by its swelling resistance, therefore making the majority of commercial ODS alloys fail in the first line of defense. Shao, known internationally for his pioneering work in radiation materials science, directs the accelerator laboratory for testing alloys under extreme irradiation conditions. Shao and his research team collaborated with the Japanese research group at Hokkaido University led by Dr. Shigeharu Ukai to develop various new ODS alloys. "We decided to explore a new design principle in which oxide particles are embedded in the martensitic phase, which is best to reduce void swelling, rather than the ferritic phase," said Shao. The resulting ODS alloys are able to survive up to 400 displacements per atom and are some of the most successful alloys developed in the field, both in terms of high-temperature strength and superior-swelling resistance. Details of the complete project were published in the Journal of Nuclear Materials along with the most recent study. The team has since conducted multiple studies and attracted the attention from the U.S. Department of Energy and nuclear industry. The project resulted in a total of 18 journal papers and two doctoral degree dissertations.
Engineering the boundary between 2D and 3D materials Boston MA (SPX) Mar 02, 2021 In recent years, engineers have found ways to modify the properties of some "two- dimensional" materials, which are just one or a few atoms thick, by stacking two layers together and rotating one slightly in relation to the other. This creates what are known as moire patterns, where tiny shifts in the alignment of atoms between the two sheets create larger-scale patterns. It also changes the way electrons move through the material, in potentially useful ways. But for practical applications, such t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |