24/7 Space News
TECH SPACE
New type of quasiparticle discovered in magnetic materials
illustration only
New type of quasiparticle discovered in magnetic materials
by Clarence Oxford
Los Angeles CA (SPX) Dec 18, 2024

A groundbreaking discovery by researchers from the University of Missouri has unveiled a new type of quasiparticle present in all magnetic materials, regardless of their strength or temperature. This finding could redefine our understanding of magnetism and pave the way for a new generation of advanced electronic devices.

Led by Deepak Singh and Carsten Ullrich of the University's College of Arts and Science, the research team, including students and postdoctoral fellows, has explored the nanoscale world - where atoms and molecules construct unique properties yet to be fully understood. Their discovery reveals that magnetism is far more dynamic than previously believed.

"We've all seen the bubbles that form in sparkling water or other carbonated drink products," said Ullrich, Curators' Distinguished Professor of Physics and Astronomy. "The quasiparticles are like those bubbles, and we found they can freely move around at remarkably fast speeds."

This mobility of quasiparticles could significantly impact spintronics, a field focused on the electron's spin rather than its charge. Spintronics, or "spin electronics," enables energy-efficient data storage and processing. Singh noted that devices powered by spintronics, such as cell phone batteries, could achieve unparalleled efficiency.

"The spin nature of these electrons is responsible for the magnetic phenomena," Singh explained. "Electrons have two properties: a charge and a spin. So, instead of using the conventional charge, we use the rotational, or spinning, property. It's more efficient because the spin dissipates much less energy than the charge."

The discovery resulted from collaboration between Singh's experimental team and Ullrich's modeling group. Singh's expertise in magnetic materials, along with experiments conducted by former graduate student Jiason Guo, allowed the team to refine material properties. Ullrich's group, supported by postdoctoral researcher Daniel Hill, analyzed the findings and developed models to understand the quasiparticle behavior. Advanced spectrometers at Oak Ridge National Laboratory played a critical role in this analysis.

Research Report:Emergent topological quasiparticle kinetics in constricted nanomagnets

Related Links
University of Missouri-Columbia
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
A new biodegradable material to replace certain microplastics
Boston MA (SPX) Dec 08, 2024
Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products. In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down ... read more

TECH SPACE
SpaceX to launch more private astronaut missions to ISS

U.S., India undertake strengthened space partnership

NASA adjusts Crew-10 launch to late March 2025

NASA sees major progress on Starlab Space Station development

TECH SPACE
Japanese startup's space rocket launch fails

FAA issues License Authorization for SpaceX Starship Flight 7

Japanese start-up says space rocket launch attempt fails

Trump-Musk alliance should boost 'space economy'

TECH SPACE
NASA honours Algerian parks with Martian namesakes

Anthropologists urge preservation of human artifacts on Mars

New study questions the potential for liquid brines on Mars

NASA Outlines Latest Moon to Mars Plans in 2024 Architecture Update

TECH SPACE
Shenzhou XIX crew completes successful spacewalk outside Tiangong station

China boosts Lunar and Mars mission capabilities with advanced Long March rockets

Long March 12 set for inaugural launch from Hainan space center

China inflatable space capsule aces orbital test

TECH SPACE
NASA outlines long-term goals for human presence in low earth orbit

EU kickstarts satellite network to rival Musk's Starlink

Growing a business from mobile apps to space software with Proba-3

AST SpaceMobile and Vodafone sign long-term agreement for global connectivity

TECH SPACE
Transforming education with virtual reality and artificial intelligence

Secretive game developer codes hit 'Balatro' in Canadian prairie province

New type of quasiparticle discovered in magnetic materials

Stretchable, flexible, recyclable. This plastic is fantastic

TECH SPACE
Does Trappist-1 b have an atmosphere after all

Planets form sequentially like falling dominos

Discovery of a planet with a shifting gas tail

Unveiling a hydrogen-controlled nano-switch in electron transport proteins

TECH SPACE
Juno identifies localized magma chambers driving Io's volcanic activity

NASA marks ten years of Hubble's Outer Planets Survey

Magnetic tornado is stirring up the haze at Jupiter's poles

Uranus moons could hold clues to hidden oceans for future space missions

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.