24/7 Space News
TECH SPACE
New, portable antenna could help restore communication after disasters
Assistant Professor Maria Sakovsky co-designed a portable antenna that can communicate with satellites and devices on the ground, making it easier to coordinate rescue and relief efforts in disaster-prone areas. | Image courtesy of Andrew Brodhead
New, portable antenna could help restore communication after disasters
by Laura Castanon for Stanford News
Stanford CA (SPX) Jan 21, 2024

When an earthquake, flood, or other disaster strikes a region, existing communication infrastructure such as cell phone and radio towers are often damaged or destroyed. Restoring emergency communications as quickly as possible is vital for coordinating rescue and relief efforts.

Researchers at Stanford University and the American University of Beirut (AUB) have developed a portable antenna that could be quickly deployed in disaster-prone areas or used to set up communications in underdeveloped regions. The antenna, described recently in Nature Communications, packs down to a small size and can easily shift between two configurations to communicate either with satellites or devices on the ground without using additional power.

"The state-of-the-art solutions typically employed in these areas are heavy, metallic dishes. They're not easy to move around, they require a lot of power to operate, and they're not particularly cost-effective," said Maria Sakovsky, an assistant professor of aeronautics and astronautics at Stanford. "Our antenna is lightweight, low-power, and can switch between two operating states. It's able to do more with as little as possible in these areas where communications are lacking."

Two functions in one antenna
The researchers developed the antenna with an approach typically used to design devices that are being deployed in space. Because of fuel and space limitations, technology being sent into orbit must be very lightweight and packaged as small as possible. Once the items are in orbit, they unfold into the proper shape for use. The researchers wanted their antenna to be similarly collapsible and lightweight.

The antenna designed by Sakovsky and her colleagues at AUB, including Joseph Costantine, Youssef Tawk, and Rosette Maria Bichara, is made of fiber composites (a material often used in satellites) and resembles a child's finger-trap toy, with multiple strips of material crossing in spirals. Just like any helix-based antenna, conductive material running through the antenna sends out signals, but thanks to its unique structure, the researchers can adjust the pattern and power of those signals in the new antenna by pulling it into longer shapes or shorter shapes.

"Because we wanted the antenna to be able to collapse into a packable shape, we started with this structure that led us to a very untraditional antenna design," Sakovsky said. "We're using shapes that have never been used on helical antennas before, and we've shown that they work."

At its most compact, the antenna is a hollow ring that stands just over 1 inch tall and about 5 inches across - not much larger than a bracelet - and weighs 1.4 ounces. In this shape, it's able to reach satellites with a high-power signal sent in a particular direction. When stretched out to about a foot tall, the antenna sends a lower power signal in all directions, more like a Wi-Fi router.

Shifting between these two states is as simple as pulling or pushing on the antenna. These movements don't even need to be particularly precise because, once the antenna is moved past a certain point, the structure snaps to the right position. The specific size and shape of the antenna design will determine which frequencies those two states communicate across.

"The frequency you want to operate at will dictate how large the antenna needs to be, but we've been able to show that no matter what frequency you operate at, you can scale this design principle to achieve the same performance," Sakovsky said.

The fabricated prototype was tested for deployment and structural performance at Stanford and its electromagnetic radiation characteristics at the antenna measurement facilities at AUB.

Applications in orbit
To be deployed in the field, the antenna would need to be paired with a transceiver to send and receive signals, a ground plane to reflect radio waves, and other electronics, but the whole package would still only weigh about 2 pounds, Sakovsky said. And the antenna's unique dual functionality means that it could replace multiple heavier antennas in areas where deployment is a challenge.

That includes uses in disaster-struck and underdeveloped areas, but also, potentially, in space. Sakovsky and her colleagues are considering adapting their design for satellite communications, allowing satellites to use the same antenna to talk to each other and to talk to the ground.

"We don't have a lot of spare operating power, volume, or mass on our spacecraft either," Sakovsky said. "This holds a lot of potential for replacing multiple antennas on a satellite with a single one."

Sakovsky is affiliated with the Stanford SystemX Alliance. Other co-authors are from American University of Beirut.

This work was funded the Swiss State Secretariat for Education, Research, and Innovation.

Research Report:A multi-stable deployable quadrifilar helix antenna with radiation reconfigurability for disaster-prone areas

Related Links
American University of Beirut
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
NASA's Transition to Commercial Space Networks: A Leap in Wideband Communication
Los Angeles CA (SPX) Jan 19, 2024
As NASA's venerable Tracking and Data Relay Satellite (TDRS) constellation nears retirement, a fresh era of space communication is on the horizon. The Space Communications and Navigation (SCaN) program, a cornerstone of NASA's communication strategy, is spearheading efforts to transition NASA missions towards utilizing commercial space-based relay services for their near-Earth communications needs. The TDRS system, a longstanding backbone for communication links between Earth and satellites in low ... read more

TECH SPACE
Sierra Space unveils full-scale prototype of expandable space station structure

Salad in space? New study says it's not a healthy choice

Ax-3 Crew Joins Expedition 70 in Space Station for Dual Operations and Research

ESA's Marcus Wandtembarks on historic Muninn Mission aboard ISS

TECH SPACE
CAS Space achieves new milestone with Kinetica 1 Y3 launch deploying 5 satellites

Spain's PLD Space Selected for European Institutional Space Launch Contracts

China's LandSpace achieves new feat with Zhuque-3's Vertical Recovery Test

Equatorial Launch Australia unveils advanced horizontal integration facility

TECH SPACE
NASA helicopter's mission ends after three years on Mars

New Year, New images from Perseverance on Mars

Polka Dots and Sunbeams: Sol 4078

Buried water ice at the Martian equator

TECH SPACE
Shenzhou 18 and 19 crews undertake intensive training for next missions

Tianzhou 6 burns up safely reentering Earth

Yan Hongsen's future dreams as 'Rocket Boy'

China's Tianzhou 7 docks with Tiangong Space Station

TECH SPACE
Eutelsat OneWeb and Paratus South Africa join forces to enhance satellite connectivity in South Africa

Into the Starfield

Booz Allen Ventures Invests in Albedo's groundbreaking VLEO satellite technology

Sidus ships LizzieSat to Vandenberg for upcoming SpaceX launch

TECH SPACE
Unibap to Supply Advanced Data Handling Computer for NASA's HyTI-2 ACMES Mission

Redwire joins forces with Blue Origin on Blue Ring Space Mobility Platform

GMV Enhances German Space Surveillance Capabilities with Advanced SST Software

New, portable antenna could help restore communication after disasters

TECH SPACE
Shallow soda lakes show promise as cradles of life on Earth

NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

New Insights into Earth's Earliest Life Forms Discovered in Palaeoarchaean Rock Samples

Revolutionizing Chemistry: Over 4 Billion Early-Life Reactions Simulated via Blockchain

TECH SPACE
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.