24/7 Space News
SPACE TRAVEL
Salad in space? New study says it's not a healthy choice
Researchers at the University of Delaware are looking at how plants grown in space are more prone to infections of Salmonella compared to plants not grown in space or grown under gravity simulations. Evan Krape | University of Delaware
Salad in space? New study says it's not a healthy choice
by Katie Peikes for UD News
Newark DE (SPX) Jan 23, 2024

Lettuce and other leafy green vegetables are part of a healthy, balanced diet - even for astronauts on a mission. It's been more than three years since the National Aeronautics and Space Administration made space-grown lettuce an item on the menu for astronauts aboard the International Space Station. Alongside their space diet staples of flour tortillas and powdered coffee, astronauts can munch on a salad, grown from control chambers aboard the ISS that account for the ideal temperature, amount of water and light that plants need to mature.

But there is a problem. The International Space Station has a lot of pathogenic bacteria and fungi. Many of these disease-causing microbes at the ISS are very aggressive and can easily colonize the tissue of lettuce and other plants. Once people eat lettuce that's been overrun by E. coli or Salmonella, they can get sick.

With billions of dollars poured into space exploration each year by NASA and private companies like SpaceX, some researchers are concerned that a foodborne illness outbreak aboard the International Space Station could derail a mission.

In new research published in Scientific Reports and in npj Microgravity, University of Delaware researchers grew lettuce under conditions that imitated the weightless environment aboard the International Space Station. Plants are masters of sensing gravity, and they use roots to find it. The plants grown at UD were exposed to simulated microgravity by rotation. The researchers found those plants under the manufactured microgravity were actually more prone to infections from a human pathogen, Salmonella.

Stomata, the tiny pores in leaves and stems that plants use to breathe, normally close to defend a plant when it senses a stressor, like bacteria, nearby, said Noah Totsline, an alumnus of UD's Department of Plant and Soil Sciences who finished his graduate program in December. When the researchers added bacteria to lettuce under their microgravity simulation, they found the leafy greens opened their stomata wide instead of closing them.

"The fact that they were remaining open when we were presenting them with what would appear to be a stress was really unexpected," Totsline said.

Totsline, the lead author of both papers, worked with plant biology professor Harsh Bais as well as microbial food safety professor Kali Kniel and Chandran Sabanayagam of the Delaware Biotechnology Institute. The research team used a device called a clinostat to rotate plants at the speed of a rotisserie chicken on a spinner.

"In effect, the plant would not know which way was up or down," Totsline said. "We were kind of confusing their response to gravity."

It wasn't true microgravity, Totsline said, but it did the job to help plants lose their sense of directionality. Ultimately, the researchers discovered that it appears Salmonella can invade leaf tissue more easily under simulated microgravity conditions than it can under typical conditions on Earth.

Additionally, Bais and other UD researchers have shown the usage of a helper bacteria called B. subtilis UD1022 in promoting plant growth and fitness against pathogens or other stressors such as drought.

They added the UD1022 to the microgravity simulation that on Earth can protect plants against Salmonella, thinking it might help the plants fend off Salmonella in microgravity.

Instead, they found the bacterium actually failed to protect plants in space-like conditions, which could stem from the bacteria's inability to trigger a biochemical response that would force a plant to close its stomata.

"The failure of UD1022 to close stomata under simulated microgravity is both surprising and interesting and opens another can of worms," Bais said. "I suspect the ability of UD1022 to negate the stomata closure under microgravity simulation may overwhelm the plant and make the plant and UD1022 unable to communicate with each other, helping Salmonella invade a plant."

Foodborne pathogens aboard the International Space Station
Microbes are everywhere. These germs are on us, on animals, on the food we eat and in the environment.

So naturally, UD microbial food safety professor Kali Kniel said that wherever humans are, there is a potential for bacterial pathogens to coexist.

According to NASA, around seven people at a time live and work on the International Space Station.

It's not the tightest environment - about as big as a six-bedroom house - but it's still the kind of place where germs can wreak havoc.

"We need to be prepared for and reduce risks in space for those living now on the International Space Station and for those who might live there in the future," Kniel said. "It is important to better understand how bacterial pathogens react to microgravity in order to develop appropriate mitigation strategies."

Kniel and Bais have a long history of bringing their subject areas of microbial food safety and plant biology together to study human pathogens on plants.

"To best develop ways to reduce risks associated with the contamination of leafy greens and other produce commodities we need to better understand the interactions between human pathogens on plants grown in space," Kniel said. "And the best way to do this is with a multidisciplinary approach."

A growing population on Earth, a greater need for safe food in space
It may be a while before humans can live on the moon or Mars, but the UD research has some big potential impacts for cohabiting outer space.

According to a United Nations report, the Earth could be home to 9.7 billion people in 2050 and 10.4 billion people in 2100.

On top of that, Bais, the UD plant biology professor, said food safety and food security measures are already at their peak across the world. With the loss of agricultural land over time to grow food, "people are going to soon think seriously about alternate habitation spaces," he said. "These are not fiction anymore."

And seemingly more often, the Centers for Disease Control and Prevention or the U.S. Food and Drug Administration will issue a recall on certain lettuce on Earth, telling people not to eat it because of a risk of E. coli or Salmonella.

With leafy greens being the food of choice for many astronauts and easy to grow in indoor environments such as a hydroponic environment in the International Space Station, Bais said it's important to make sure those greens are always safe to eat.

"You don't want the whole mission to fail just because of a food safety outbreak," Bais said.

Solutions: sterilized seeds and improved genetics
So, if plants are opening their stomata wider in a microgravity environment and allowing bacteria to easily get in, what can be done?

It turns out, the answer isn't that simple.

"Starting with sterilized seeds is a way to reduce risks of having microbes on plants," Kniel said. "But then microbes may be in the space environment and can get onto plants that way."

Bais said scientists may need to tweak plants' genetics to prevent them from opening their stomata wider in space. His lab is already taking different lettuce varieties that have different genetics and evaluating them under simulated microgravity.

"If, for example, we find one that closes their stomata compared to another we have already tested that opens their stomata, then we can try to compare the genetics of these two different cultivars," Bais said. "That will give us a lot of questions in terms of what is changing."

Any answers they find could help prevent future problems with rocket salad.

Research Report:Microgravity and evasion of plant innate immunity by human bacterial pathogens

Research Report:Simulated microgravity facilitates stomatal ingression by Salmonella in lettuce and suppresses a biocontrol agent

Related Links
University of Delaware
Space Tourism, Space Transport and Space Exploration News

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE TRAVEL
Designing the 'perfect' meal to feed long-term space travelers
Washington DC (SPX) Jan 03, 2024
Imagine blasting off on a multiyear voyage to Mars, fueled by a diet of bland, prepackaged meals. As space agencies plan for longer missions, they're grappling with the challenge of how to best feed people. Now, researchers reporting in ACS Food Science and Technology have designed the optimal "space meal": a tasty vegetarian salad. They chose fresh ingredients that meet male astronauts' specialized nutritional needs and can be grown in space. Astronauts in space burn more calories than humans on ... read more

SPACE TRAVEL
Sierra Space unveils full-scale prototype of expandable space station structure

Salad in space? New study says it's not a healthy choice

Ax-3 Crew Joins Expedition 70 in Space Station for Dual Operations and Research

ISS set to receive enhanced HPE Supercomputer

SPACE TRAVEL
CAS Space achieves new milestone with Kinetica 1 Y3 launch deploying 5 satellites

Spain's PLD Space Selected for European Institutional Space Launch Contracts

Equatorial Launch Australia unveils advanced horizontal integration facility

China's LandSpace achieves new feat with Zhuque-3's Vertical Recovery Test

SPACE TRAVEL
NASA helicopter's mission ends after three years on Mars

New Year, New images from Perseverance on Mars

Polka Dots and Sunbeams: Sol 4078

Buried water ice at the Martian equator

SPACE TRAVEL
Shenzhou 18 and 19 crews undertake intensive training for next missions

Tianzhou 6 burns up safely reentering Earth

Yan Hongsen's future dreams as 'Rocket Boy'

China's Tianzhou 7 docks with Tiangong Space Station

SPACE TRAVEL
Into the Starfield

Booz Allen Ventures Invests in Albedo's groundbreaking VLEO satellite technology

Sidus ships LizzieSat to Vandenberg for upcoming SpaceX launch

Small solar sails could be the next 'giant leap' for interplanetary space exploration

SPACE TRAVEL
Novel color holographic 3D display offers enhanced viewing angle

Redwire joins forces with Blue Origin on Blue Ring Space Mobility Platform

Scientists trap krypton atoms to form one-dimensional gas

GMV and Astroscale UK spearhead new ESA initiative for improved satellite collision avoidance

SPACE TRAVEL
New Insights into Earth's Earliest Life Forms Discovered in Palaeoarchaean Rock Samples

Revolutionizing Chemistry: Over 4 Billion Early-Life Reactions Simulated via Blockchain

NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

Shallow soda lakes show promise as cradles of life on Earth

SPACE TRAVEL
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.