. 24/7 Space News .
STELLAR CHEMISTRY
New design could make fiber communications more energy efficient
by Staff Writers
Research Triangle Park NC (SPX) Apr 23, 2020

After studying the system in more detail, the research team discovered that breaking left-right symmetry in their device could reduce energy loss in optical fiber networks and data centers to zero.

Researchers say a new discovery on a U.S. Army project for optoelectronic devices could help make optical fiber communications more energy efficient.

The University of Pennsylvania, Peking University and Massachusetts Institute of Technology worked on a project funded, in part by the Army Research Office, which is an element of U.S. Army Combat Capabilities Development Command's Army Research Laboratory. The research sought to develop a new design of optical devices that radiate light in a single direction. This single-sided radiation channel for light can be used in a wide array of optoelectronic applications to reduce energy loss in optical fiber networks and data centers. The journal Nature published the findings.

Light tends to flow in optical fibers along one direction, like water flows through a pipe. On-chip couplers are used to connect fibers to chips, where light signals are generated, amplified, or detected. While most light going through the coupler continues through to the fiber, some of the light travels in the opposite direction, leaking out.

A large part of energy consumption in data traffic is due to this radiation loss. Total data center energy consumption is two percent of the global electricity demand, and demand increases every year.

Previous studies consistently suggested that a minimum loss of 25 percent at each interface between optical fibers and chips was a theoretical upper bound that could not be surpassed. Because data centers require complex and interwoven systems of nodes, that 25-percent loss quickly multiplies as light travels through a network.

"You may need to pass five nodes (10 interfaces) to communicate with another server in a typical medium-sized data center, leading to a total loss of 95 percent if you use existing devices," said Jicheng Jin, University of Pennsylvania doctoral student. "In fact, extra energy and elements are needed to amplify and relay the signal again and again, which introduces noise, lowers signal-to-noise ratio, and, ultimately, reduces communication bandwidth."

After studying the system in more detail, the research team discovered that breaking left-right symmetry in their device could reduce the loss to zero.

"These exciting results have the potential to spur new research investments for Army systems," said Dr. Michael Gerhold, program manager, optoelectronics, Army Research Office. "Not only do the coupling efficiency advances have potential to improve data communications for commercial data centers, but the results carry huge impact for photonic systems where much lower intensity signals can be used for the same precision computation, making battery powered photonic computers possible."

To better understand this phenomenon, the team developed a theory based on topological charges. Topological charges forbid radiation in a specific direction. For a coupler with both up-down and left-right symmetries, there is one charge on each side, forbidding the radiation in the vertical direction.

"Imagine it as two-part glue," said Bo Zhen, assistant professor, department of physics and astronomy at University of Pennsylvania. "By breaking the left-right symmetry, the topological charge is split into two half charges - the two-part glue is separated so each part can flow. By breaking the up-down symmetry, each part flows differently on the top and the bottom, so the two-part glue combines only on the bottom, eliminating radiation in that direction. It's like a leaky pipe has been fixed with a topological two-part glue."

The team eventually settled on a design with a series of slanted bars, which break left-right and up-down symmetries at the same time. To fabricate such structures, they developed a novel etching method: silicon chips were placed on a wedge-like substrate, allowing etching to occur at a slanted angle. In comparison, standard etchers can only create vertical side walls. As a future step, the team hopes to further develop this etching technique to be compatible with existing foundry processes and also to come up with an even simpler design for etching.

The authors expect applications both in helping light travel more efficiently at short distances, such as between an optical fiber cable and a chip in a server, and over longer distances, such as long-range Lidar systems.

Research paper


Related Links
US Army Research Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Light from stretchable sheets of atoms for quantum technologies
Sydney, Australia (SPX) Apr 17, 2020
The researchers say their results, using an atomically thin material, hexagonal boron nitride, constitute a significant step forward in understanding light-matter interactions of quantum systems in 2D materials, and the journey towards scalable on-chip devices for quantum technologies. The study is published in Advanced Materials. The ability to finely tune the colors of quantum light has been proposed as a key step in developing quantum network architectures,where photons, the fundamental buildin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA researchers look to the future on Earth Day 50

Space Station science payload operations continue amid pandemic

Space tourists will celebrate New Year 2022 in orbit for first time

NASA Astronauts Meir, Morgan, Crewmate Skripochka Return from Space Station

STELLAR CHEMISTRY
NASA, SpaceX to Launch First Astronauts to Space Station from U.S. Since 2011

Scientific machine learning paves way for rapid rocket engine design

NASA announces first SpaceX crewed flight for May 27

US Rocketry Chief Offers Novel Explanation for Why America Continues to Buy Russia's RD-180 Engines

STELLAR CHEMISTRY
Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

STELLAR CHEMISTRY
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

STELLAR CHEMISTRY
SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

NewSpace Philosophies: Who, How, What?

OneWeb goes bankrupt

STELLAR CHEMISTRY
Sensors woven into a shirt can monitor vital signs

Best homemade mask combines cotton, natural silk, chiffon

Now metal surfaces can be instant bacteria killers

Cool down fast to advance quantum nanotechnology

STELLAR CHEMISTRY
Astronomers discover planet that never was

CHEOPS space telescope ready for scientific operation

HD 158259 and it's six planets almost in rhythm

Simulating early ocean vents shows life's building blocks form under pressure

STELLAR CHEMISTRY
New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.