. 24/7 Space News .
NANO TECH
New DNA origami motor breaks speed record for nano machines
by Staff Writers
Atlanta GA (SPX) Mar 04, 2020

Sixteen strands of DNA, stacked four-by-four, form the beam-shaped chassis of the DNA motor (in gray). Bits of DNA (in green) protrude from the chassis like little feet. The motor is fueled by RNA laid on a track. The RNA binds with the DNA feet on the bottom face of the chassis. An enzyme targeting bound RNA then destroys these RNA molecules (grey and red). The process repeats, as more RNA pulls the DNA feet, tipping the chassis forward, causing it to roll.

Through a technique known as DNA origami, scientists have created the fastest, most persistent DNA nano motor yet. Angewandte Chemie published the findings, which provide a blueprint for how to optimize the design of motors at the nanoscale - hundreds of times smaller than the typical human cell.

"Nanoscale motors have tremendous potential for applications in biosensing, in building synthetic cells and also for molecular robotics," says Khalid Salaita, a senior author of the paper and a professor of chemistry at Emory University. "DNA origami allowed us to tinker with the structure of the motor and tease out the design parameters that control its properties."

The new DNA motor is rod-shaped and uses RNA fuel to roll persistently in a straight line, without human intervention, at speeds up to 100 nanometers per minute. That's up to 10 times faster than previous DNA motors.

Salaita is also on the faculty of the Wallace H. Coulter Department of Biomedical Engineering, a joint program of Georgia Institute of Technology and Emory. The paper is a collaboration between the Salaita lab and Yonggang Ke, assistant professor at Emory's School of Medicine and the Wallace H. Coulter Department of Biomedical Engineering.

"Our engineered DNA motor is fast," Ke says, "but we still have a long way to go to achieve the versatility and efficiency of nature's biological motors. Ultimately, the goal is to make artificial motors that match the sophistication and functionality of proteins that move cargo around in cells and allow them to perform various functions."

Making things out of DNA, nicknamed DNA origami after the traditional Japanese paper folding craft, takes advantage of the natural affinity for the DNA bases A, G, C and T to pair up with one another. By moving around the sequence of letters on the strands, researchers can get the DNA strands to bind together in ways that create different shapes. The stiffness of DNA origami can also easily be adjusted, so they remain straight as a piece of dry spaghetti or bend and coil like boiled spaghetti.

Growing computational power, and the use of DNA self-assembly for the genomics industry, have greatly advanced the field of DNA origami in recent decades. Potential uses for DNA motors include drug delivery devices in the form of nanocapsules that open up when they reach a target site, nanocomputers and nanorobots working on nanoscale assembly lines.

"These applications may seem like science fiction now, but our work is helping move them closer to reality," says Alisina Bazrafshan, an Emory PhD candidate and first author of the new paper.

One of the biggest challenges of DNA motors is the fact that rules governing motion at the nanoscale are different than those for objects that humans can see. Molecular-scale devices must fight their way through a constant barrage of molecules. These forces can cause such tiny devices to drift randomly like grains of pollen floating on the surface of a river, a phenomenon known as Brownian motion.

The viscosity of liquids also makes a much larger impact on something as tiny as a molecule, so water becomes more like molasses.

Many prior DNA motors "walk" with a mechanical leg-over-leg motion. The problem is that two-legged versions tend to be inherently unstable. Walking motors with more than two legs gain stability but the extra legs slow them down.

The Emory researchers solved these problems by designing a rod-shaped DNA motor that rolls. The rod, or "chassis" of the motor consists of 16 DNA strands bound together in a four-by-four stack to form a beam with four flat sides. Thirty-six bits of DNA protrude from each face of the rod, like little feet.

To fuel its motion, the motor is placed on a track of RNA, a nucleic acid with base pairs that are complementary to DNA base pairs. The RNA pulls at the DNA feet on one face of the motor and binds them to the track. An enzyme that targets only RNA that is bound to DNA then quickly destroys the bound RNA. That causes the motor to roll, as the DNA feet on the next face of the motor get pulled forward by their attraction to RNA.

The rolling DNA motor forges a persistent path, so it continues to move in a straight line, as opposed to the more random motion of walking DNA motors. The rolling motion also adds to the new DNA motor's speed: It can travel the length of a human stem cell within two or three hours. Previous DNA motors would need about a day to cover that same distance, and most lack the persistence to make it that far.

One of the biggest challenges was measuring the speed of the motor at the nanoscale. That problem was solved by adding fluorescent tags on either end of the DNA motor and optimizing imaging conditions on a fluorescent microscope.

Through trial and error, the researchers determined that a stiff rod shape was optimal for moving in a straight line and that 36 feet on each face of the motor provided optimal density for speed.

"We provided a tunable platform for DNA origami motors that other researchers can use to design, test and optimize motors to further advance the field," Bazrafshan says. "Our system allows you to test the effects of all kinds of variables, such as chassis shape and rigidity and the number and density of legs to fine tune your design."

For instance, what variables would give rise to a DNA motor that moves in circles? Or a motor that turns to go around barriers? Or one that turns in response to a particular target?

"We hope other researchers will come up with other creative designs based on these findings," Bazrafshan says.

Research paper


Related Links
Emory Health Sciences
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
Deep-sea osmolyte makes biomolecular machines heat-tolerant
Sapporo, Japan (SPX) Jan 24, 2020
Researchers have discovered a method to control biomolecular machines over a wide temperature range using deep-sea osmolyte trimethylamine N-oxide (TMAO). This finding could open a new dimension in the application of artificial machines fabricated from biomolecular motors and other proteins. Biomolecular motors are the smallest natural machines that keep living organisms dynamic. They can generate force and perform work on their own by consuming chemical energy. In recent years, reconstructed biom ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
No going back: Bali's Chinese tourists fear virus-hit homeland

Vertex Aerospace Awarded $150M NASA Contract

Insects, seaweed and lab-grown meat could be the foods of the future

Katherine Johnson, NASA mathematician, dies at 101

NANO TECH
Northrop Grumman completes key test for Orion Launch Abort System Attitude Control Motor

AFRL, Masten Space Systems, NASA, collaborate on successful testing of methane engine

Simple, fuel-efficient rocket engine could enable cheaper, lighter spacecraft

SpaceX announces partnership to send four tourists into deep orbit

NANO TECH
Seismic activity on Mars resembles that found in the Swabian Jura

The seismicity of Mars

Magnetic field at Martian surface ten times stronger than expected

First direct seismic measurements of mars reveal a geologically active planet

NANO TECH
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

NANO TECH
Kleos Space secures 3M Euro loan agreement with Dubai family office

Europlanet launches 10M euro Research Infrastructure to support planetary science

Boeing buying Russian components for Starliner

NSW Government establishes a home for space industry initiatives

NANO TECH
OceanGate working with NASA to develop new carbon fiber pressure vessels

Creating custom light using 2D materials

Raytheon awarded $17 million for dual band radar spares for USS Ford

Time-resolved measurement in a memory device

NANO TECH
Salmon parasite is world's first non-oxygen breathing animal

Sub-Neptune sized planet validated with the habitable-zone planet finder

Planet on edge of destruction in 18-hour year frenzy

LOFAR pioneers new way to study exoplanet environments

NANO TECH
One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery

A close-up of Arrokoth reveals how planetary building blocks were constructed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.