. | . |
Laser physics: Transformation through light by Staff Writers Munich, Germany (SPX) Feb 13, 2019
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light. C60 is an extremely well-studied carbon molecule, which consists of 60 carbon atoms and is structured like a soccer ball. The macromolecule is also known as buckminsterfullerene (or buckyball), a name given as a tribute to the architect Richard Buckminster Fuller, who designed buildings with similar shapes. Laser physicists have now irradiated buckyballs with infrared femtosecond laser pulses (one femtosecond is a millionth of a billionth of a second). Under the influence of the intense light, the form of the macromolecule was changed from round to elongated. The physicists were able to observe this structural transformation by using the following trick: At its maximum strength the infrared pulse triggered the release of an electron from the molecule. Owing to the oscillations in the electromagnetic field of the light, the electron was first accelerated away from and then drawn back toward the molecule, all within the timespan of a few femtoseconds. Finally, the electron scattered off the molecule and left it completely. Images of these diffracted electrons allowed the deformed structure of the molecule to be reconstructed. Fullerenes, the discovery of which was honored with the Nobel Prize in Chemistry in 1996, are stable, biocompatible, and exhibit remarkable physical, chemical and electronic properties. "A deeper understanding of the interaction of fullerenes with ultrashort, intense light may result in new applications in ultrafast, light-controlled electronics, which could operate at speeds many orders of magnitude faster than conventional electronics", explains Ludwig-Maximilians-Universitaet (LMU) in Munich Professor Matthias Kling.
Physicists take big step in nanolaser design Moscow, Russia (SPX) Feb 07, 2019 Nanolasers have recently emerged as a new class of light sources that have a size of only a few millionths of a meter and unique properties remarkably different from those of macroscopic lasers. However, it is almost impossible to determine at what current the output radiation of the nanolaser becomes coherent, while for practical applications, it is important to distinguish between the two regimes of the nanolaser: the true lasing action with a coherent output at high currents and the LED-like regime w ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |