. 24/7 Space News .
TECH SPACE
Scientists discover new type of magnet
by Staff Writers
New York NY (SPX) Feb 08, 2019

In a normal magnetic material, dense magnetic moments try to align with their neighbors (left). By contrast, in a singlet-based material, unstable magnetic moments pop in and out of existence, and stick to one another in aligned clumps (right).

A team of scientists has discovered the first robust example of a new type of magnet - one that holds promise for enhancing the performance of data storage technologies.

This "singlet-based" magnet differs from conventional magnets, in which small magnetic constituents align with one another to create a strong magnetic field. By contrast, the newly uncovered singlet-based magnet has fields that pop in and out of existence, resulting in an unstable force - but also one that potentially has more flexibility than conventional counterparts.

"There's a great deal of research these days into the use of magnets and magnetism to improve data storage technologies," explains Andrew Wray, an assistant professor of physics at New York University, who led the research team. "Singlet-based magnets should have a more sudden transition between magnetic and non-magnetic phases. You don't need to do as much to get the material to flip between non-magnetic and strongly magnetic states, which could be beneficial for power consumption and switching speed inside a computer.

"There's also a big difference in how this kind of magnetism couples with electric currents. Electrons coming into the material interact very strongly with the unstable magnetic moments, rather than simply passing through. Therefore, it's possible that these characteristics can help with performance bottlenecks and allow better control of magnetically stored information."

The work, published in the journal Nature Communications, also included researchers from Lawrence Berkeley National Laboratory, the National Institute of Standards and Technology, the University of Maryland, Rutgers University, the Brookhaven National Laboratory, Binghamton University, and the Lawrence Livermore National Laboratory.

The idea for this type of magnet dates back to the 1960s, based on a theory that stood in sharp contrast to what had long been known about conventional magnets.

A typical magnet contains a host of tiny "magnetic moments" that are locked into alignment with other magnetic moments, all acting in unison to create a magnetic field. Exposing this assembly to heat will eliminate the magnetism; these little moments will remain - but they'll be pointing in random directions, no longer aligned.

A pioneering thought 50 years ago, by contrast, posited that a material that lacks magnetic moments might still be able to be a magnet. This sounds impossible, the scientists note, but it works because of a kind of temporary magnetic moment called a "spin exciton," which can appear when electrons collide with one another under the right conditions.

"A single spin exciton tends to disappear in short order, but when you have a lot of them, the theory suggested that they can stabilize each other and catalyze the appearance of even more spin excitons, in a kind of cascade," Wray explains.

In the Nature Communications research, the scientists sought to uncover this phenomenon. Several candidates had been found dating back to the 1970s, but all were difficult to study, with magnetism only stable at extremely low temperatures.

Using neutron scattering, X-ray scattering, and theoretical simulations, the researchers established a link between the behaviors of a far more robust magnet, USb2, and the theorized characteristics of singlet-based magnets.

"This material had been quite an enigma for the last couple of decades - the ways that magnetism and electricity talk to one another inside it were known to be bizarre and only begin to make sense with this new classification," remarks Lin Miao, an NYU postdoctoral fellow and the paper's first author.

Specifically, they found that USb2 holds the critical ingredients for this type of magnetism - particularly a quantum mechanical property called "Hundness" that governs how electrons generate magnetic moments. Hundness has recently been shown to be a crucial factor for a range of quantum mechanical properties, including superconductivity.


Related Links
New York University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Green alternative to PET could be even greener
Groningen, The Netherlands (SPX) Feb 01, 2019
One of the most successful plastics is polyethylene terephthalate (PET), the material we use to make bottles and fibers for clothing. However, PET is made from petroleum-based building blocks. An alternative to PET can be made from bio-based furan molecules, but to polymerize these furans you need toxic catalysts and high temperatures. Now, polymer chemists from the University of Groningen, led by Prof. Katja Loos, have described an enzyme-based polymerization method. Their results were published ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Richard Branson says he'll fly to space by July

The future of human spaceflight in America

New research opportunities on International Space Station

Refabricator to recycle, reuse plastic installed on Space Station

TECH SPACE
Arianespace orbits two telecommunications satellites on first Ariane 5 launch of 2019

SpaceX no-load test delayed

Launch of Unmanned US Dragon 2 Spacecraft to ISS Set for March 2

Learning on the Job: Student Rocket Launches From Norway

TECH SPACE
Curiosity Mars Rover Departs Vera Rubin Ridge

More than 835 recovery commands have been sent to Opportunity

Developing a flight strategy to land heavier vehicles on Mars

NASA's MAVEN spacecraft shrinking its Mars orbit to prepare for Mars 2020 Rover

TECH SPACE
Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

TECH SPACE
Science on a plane - ESA's next parabolic flight campaign

Egypt to Host African Space Agency's Headquarters - Foreign Ministry

Aerojet Rocketdyne's affordability and efficiency drive achieves success

Iridium Declares Victory; $3 Billion Satellite Constellation Upgrade Complete

TECH SPACE
Northrop Grumman awarded $17.4M for space tracking system

Lefty or righty molecules lend a hand to material structures

Will moving to the commercial cloud leave some data users behind?

A better way to make acrylics

TECH SPACE
Study shows unusual microbes hold clues to early life

Massive collision in the planetary system Kepler 107

ASU scientists study organization of life on a planetary scale

Magnifying glass reveals unexpected intermediate mass exoplanets

TECH SPACE
New Horizons' evocative farewell glance at Ultima Thule

Sodium, Not Heat, Reveals Volcanic Activity on Jupiter's Moon Io

New Horizons' Newest and Best-Yet View of Ultima Thule

Missing link in planet evolution found









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.