. | . |
New Horizons' evocative farewell glance at Ultima Thule by Staff Writers Washington DC (SPX) Feb 11, 2019
An evocative new image sequence from NASA's New Horizons spacecraft offers a departing view of the Kuiper Belt object (KBO) nicknamed Ultima Thule - the target of its New Year's 2019 flyby and the most distant world ever explored. These aren't the last Ultima Thule images New Horizons will send back to Earth - in fact, many more are to come - but they are the final views New Horizons captured of the KBO (officially named 2014 MU69) as it raced away at over 31,000 miles per hour (50,000 kilometers per hour) on Jan. 1. The images were taken nearly 10 minutes after New Horizons crossed its closest approach point. "This really is an incredible image sequence, taken by a spacecraft exploring a small world four billion miles away from Earth," said mission Principal Investigator Alan Stern, of Southwest Research Institute. "Nothing quite like this has ever been captured in imagery." The newly released images also contain important scientific information about the shape of Ultima Thule, which is turning out to be one of the major discoveries from the flyby. The first close-up images of Ultima Thule - with its two distinct and, apparently, spherical segments - had observers calling it a "snowman." However, more analysis of approach images and these new departure images have changed that view, in part by revealing an outline of the portion of the KBO that was not illuminated by the Sun, but could be "traced out" as it blocked the view to background stars. Stringing 14 of these images into a short departure movie, New Horizons scientists can confirm that the two sections (or "lobes") of Ultima Thule are not spherical. The larger lobe, nicknamed "Ultima," more closely resembles a giant pancake and the smaller lobe, nicknamed "Thule," is shaped like a dented walnut. "We had an impression of Ultima Thule based on the limited number of images returned in the days around the flyby, but seeing more data has significantly changed our view," Stern said. "It would be closer to reality to say Ultima Thule's shape is flatter, like a pancake. But more importantly, the new images are creating scientific puzzles about how such an object could even be formed. We've never seen something like this orbiting the Sun." The departure images were taken from a different angle than the approach photos and reveal complementary information on Ultima Thule's shape. The central frame of the sequence was taken on Jan. 1 at 05:42:42 UT (12:42 a.m. EST), when New Horizons was 5,494 miles (8,862 kilometers) beyond Ultima Thule, and 4.1 billion miles (6.6 billion kilometers) from Earth. The object's illuminated crescent is blurred in the individual frames because a relatively long exposure time was used during this rapid scan to boost the camera's signal level - but the science team combined and processed the images to remove the blurring and sharpen the thin crescent. Many background stars are also seen in the individual images; watching which stars "blinked out" as the object passed in front them allowed scientists to outline the shape of both lobes, which could then be compared to a model assembled from analyzing pre-flyby images and ground-based telescope observations. "The shape model we have derived from all of the existing Ultima Thule imagery is remarkably consistent with what we have learned from the new crescent images," says Simon Porter, a New Horizons co-investigator from the Southwest Research Institute, who leads the shape-modeling effort. "While the very nature of a fast flyby in some ways limits how well we can determine the true shape of Ultima Thule, the new results clearly show that Ultima and Thule are much flatter than originally believed, and much flatter than expected," added Hal Weaver, New Horizons project scientist from the Johns Hopkins Applied Physics Laboratory. "This will undoubtedly motivate new theories of planetesimal formation in the early solar system." The images in this sequence will be available on the New Horizons LORRI website this week. Raw images from the camera are posted to the site each Friday.
New Horizons' Newest and Best-Yet View of Ultima Thule Laurel MD (SPX) Jan 25, 2019 The wonders - and mysteries - of Kuiper Belt object 2014 MU69 continue to multiply as NASA's New Horizons spacecraft beams home new images of its New Year's Day 2019 flyby target. This image, taken during the historic Jan. 1 flyby of what's informally known as Ultima Thule, is the clearest view yet of this remarkable, ancient object in the far reaches of the solar system - and the first small "KBO" ever explored by a spacecraft. Obtained with the wide-angle Multicolor Visible Imaging Camera ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |