. 24/7 Space News .
IRON AND ICE
Landslides, avalanches may be key to long-term comet activity
by Staff Writers
Tucson AZ (SPX) Sep 13, 2018

Sequence of images showing different views of the Aswan cliff collapse on Comet 67P/Churyumov-Gerasimenko. The first image shows the fracture long before it gave away on 10 July 2015. Images taken on 15 July and 26 December show the bright, pristine material exposed in the cliff collapse, which is thought to have occurred on 10 July. Although not obvious from these images, the brightness had faded by about 50% by the 26 December image, showing that much of the exposed water-ice had already sublimated by that time. The images from 2016 show different views of the new cliff top. By August 2016, much of the cliff face had returned to the average brightness of the comet. See more mass wasting event examples here

The release of gases through sublimation is the defining process of comets, but a new paper by Planetary Science Institute Research Scientist Jordan K. Steckloff and Senior Scientist Nalin H. Samarasinha says that periodic landslides and avalanches, known as mass wasting, may be responsible for keeping comets active over a long time.

These escaping gases loft dust off of the comet, forming a dust cloud visible from the Earth. This gas release can even change the spin state of the comet. However, this process has long been expected to shut down as the ice present at the surface of the comet sublimates away, leaving a dust layer at the surface that insulates the remaining subsurface ice. It has therefore been unknown how comets remain active, rather than fade into non-active objects.

According to "The Sublimative Torques of Jupiter Family Comets and Mass Wasting Events on Their Nuclei" in the journal Icarus, mass-wasting activity can excavate and expose buried ices to the surface of the comet, giving the comet fresh ice to sublimate.

However, mass-wasting leads to a flattening of features on the surface of the comet over time, which in turn reduces the number and frequency of mass wasting events.

"Nalin and I independently developed our own models to study how sublimating gases that escape from a comet's surface generate torques that change the comet's spin state," Steckloff said.

"However, our models approached this problem from two completely different perspectives: Nalin's model is based on Earth-based observations of comet light curves and observed gas sublimation rates.

"In contrast, my model considers how gases push on the surface of the comet as they escape, accounting for the effects of a comets' activity, shape, and topography. Despite these different perspectives, these two models must necessarily be consistent with one another if they are accurately describing the same phenomenon."

By comparing their models, Steckloff and Samarasinha found that their models can only agree with one another if these sublimative torques originate primarily from steep, mass-wasting-prone slopes.

This suggests that mass-wasting events such as landslides and avalanches are critical to maintaining sublimative activity on comets. This is an important result, as it was previously unknown how comets maintain their activity over many, many orbits.

Moreover, this mass-wasting process provides a mechanism for reactivating dormant comets. If spin state changes or other processes can trigger a mass-wasting event on a dormant comet, the resulting exposed ice can reestablish vigorous sublimative activity.

This may explain how comets such as 2P/Encke remain active. Comet Encke took so long to evolve into its current orbit, that it should have long ago run out of ices to sublimate. This dynamical evolution timescale is 200 times longer than the sublimative timescale.

It has been proposed that Comet Encke was therefore dormant for the majority of this time, but this requires a mechanism for reactivating the comet. A large mass-wasting event may have been the mechanism that reactivated Encke into the active comet that we observe today.

"We were trying to understand how cometary activity would affect their rotation," said Samarasinha.

"In the process, we were able to explore the long-term evolution of cometary activity and conjecture how the surface layers of short-period comets might evolve. By understanding the physical processes occurring on the surfaces and in the surface layers of comets, we can provide the overall context to accurately interpret observations of comets.

"An in-depth understanding of comets help us ascertain the role played by these building blocks of the giant planets in the formation of the solar system and also the various roles played by comets throughout the history of the solar system."

Research Report: "The Sublimative Torques of Jupiter Family Comets and Mass Wasting Events on Their Nuclei," Jordan K. Steckloff and Nalin H. Samarasinha 2018 Sep. 15, Icarus


Related Links
Planetary Science Institute
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
The Umov Effect: Space dust clouds and the mysteries of the universe
Vladivostok, Russia (SPX) Aug 10, 2018
FEFU scientists are developing a methodology to calculate the ratio of dust and gas in comas and tails of comets. This will help learn more about the history of the Solar System and its development, as well as understand the processes that took part on different stages of universal evolution. A team of scientists from the Far Eastern Federal University (FEFU) under the supervision of the astrophysicist Evgenij Zubko, Ph.D., a lead scientist of the School of Natural Sciences at FEFU is trying to so ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Champagne in space: Zero-G bottle lets tourists drink bubbly

5 Hazards of Human Spaceflight

Cosmonaut shows space station hole to calm public

Russian Cosmonauts Asked to Look For Proof to Unravel Soyuz Hole Origin

IRON AND ICE
Tesla tumbles on new executive departures, Musk interview

Elon Musk muses about life over whiskey and weed

Roscosmos Head Offers to Continue Rocket Engines Supply to US Despite Sanctions

Aerojet Rocketdyne demonstrates advanced electric propulsion capabilities

IRON AND ICE
A new listening plan for Mars Opportunity rover

Curiosity Surveys a Mystery Under Dusty Skies

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

IRON AND ICE
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

IRON AND ICE
Making space exploration real on Earth

Iridium and Rolls-Royce Marine to expand the reach and capabilities of autonomous vessels

European Space Talks: sharing our passion for space

The world's lowest-cost global communications network

IRON AND ICE
Raytheon receives contract for Zumwalt radars

Satellites more at risk from fast solar wind than a major space storm

Diamond dust enables low-cost, high-efficiency magnetic field detection

Facebook to build $1 bn Singapore data centre, first in Asia

IRON AND ICE
New Exoplanet Discovered by Team Led by Canadian Student

SwRI scientists find evidence for early planetary shake-up

A Direct-Imaging Mission to Study Earth-like Exoplanets

Youngest Accretion Disk Detected in Star Formation

IRON AND ICE
New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.