. 24/7 Space News .
Diamond dust enables low-cost, high-efficiency magnetic field detection
by Staff Writers
Berkeley CA (SPX) Sep 11, 2018

In the device, which is about the size of a fingernail, clusters of diamond nanocrystals (black spots) sit atop a material called a multiferroic. The multiferroic transmits microwave energy into the crystals much more efficiently than other methods.

UC Berkeley engineers have created a device that dramatically reduces the energy needed to power magnetic field detectors, which could revolutionize how we measure the magnetic fields that flow through our electronics, our planet, and even our bodies.

"The best magnetic sensors out there today are bulky, only operate at extreme temperatures, and can cost tens of thousands of dollars," said Dominic Labanowski, who helped create the device, which is made from nitrogen-infused diamonds, as a postdoctoral researcher in the department of electrical engineering and computer science. "Our sensors could replace those more difficult-to-use sensors in a lot of applications from navigation to medical imaging to natural resource exploration."

Each time a diamond-based sensor measures a magnetic field, it must first be blasted with 1 to 10 Watts of microwave radiation to prime them to be sensitive to magnetic fields, which is enough power to melt electronic components. The researchers found a new way to excite tiny diamonds with microwaves using 1000 times less power, making it feasible to create magnetic-sensing devices that can fit into electronics like cell phones.

This work was led by Sayeef Salahuddin's lab at UC Berkeley in collaboration with researchers from the Ohio State University. The team reports their device online Sep. 7 in the journal Science Advances.

Defective Diamonds
Bombarding a diamond with a jet of nitrogen gas can knock out some of its highly ordered carbon atoms, replacing them with nitrogen atoms. These nitrogen interlopers - called nitrogen vacancy (NV) centers - have unique properties that are well-understood by scientists.

"You can use these NV centers as very powerful sensors, but traditionally their applications have been limited because it takes a lot of power to read them," said Labanowski.

To detect magnetic fields, scientists first have to hit the NV centers with high-powered microwave radiation, equal to about one-hundredth the power of your standard microwave or ten times the power consumed by an average cell phone. They then illuminate the NV centers with a laser, which is absorbed and emitted by the nitrogen atoms.

The strength of the magnetic field is related to the strength of the emitted laser light: the intensity of the emitted light can be used to measure the field strength

To create the device, the researchers placed diamond nanocrystals - containing thousands of NV centers apiece - onto a film called a multiferroic. This new type of material is capable of transferring microwave energy to the crystals much more efficiently.

"This technique dramatically lowers the power consumption of the sensors and makes them usable for realistic applications," Labanowski said.

Imaging Inside the Body and Under the Earth
Medical applications of magnetic sensors include magnetoencephalography, which uses magnetic fields to measure brain waves, or magnetocardiography, which uses magnetic fields to image heart function. Currently these machines are the size of a small room and can cost upwards of $3 million.

"With low-power NV sensors, you could imagine taking a room-sized magnetoencephalography machine and turning it into something like a helmet, dramatically reducing the size and the costs," Labanowski said.

The sensors could also be placed in planes or drones to aid in spotting rare earth metals underground, or used in cell phones to improve navigation.

Magnetic field detection is just one application of NV centers, Salahuddin says. The team is planning to refine their technology to use NV centers and other types of quantum systems in a wide variety of applications.

"While we emphasized magnetic field sensing, our work could lead to electrical manipulation of quantum systems in general with much broader areas of application including quantum computing," Salahuddin said.

Research paper

Related Links
University of California - Berkeley
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

All that is gold is not biochemically stable
Durham NC (SPX) Sep 04, 2018
It turns out gold isn't always the shining example of a biologically stable material that it's assumed to be, according to environmental engineers at Duke's Center for the Environmental Implications of NanoTechnology (CEINT). In a nanoparticle form, the normally very stable, inert, noble metal actually gets dismantled by a microbe found on a Brazilian aquatic weed. While the findings don't provide dire warnings about any unknown toxic effects of gold, they do provide a warning to researchers ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Airbus-built ACLS Life Support Rack is ready for launch from Tanegashima

Bahrain in talks with Russia to send astronauts into space

Air leak hole in Soyuz likely made during construction

Going up! Japan to test mini 'space elevator'

Alaska Aerospace To Host Open House And Town Hall Meeting In Kodiak

How an LWO and his team guided a Minotaur IV rocket out of the labyrinth

NASA, SpaceX Agree on Plans for Crew Launch Day Operations

India readies baby rockets to tap small satellites' market

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

Opportunity rover expected to call home as Martian dust storm clears

Martian skies clearing over Opportunity Rover

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

European Space Talks: sharing our passion for space

The world's lowest-cost global communications network

Successful capital raising sees Kleos Space Launch on the ASX

Artwork unveiled on exoplanet satellite

Facebook to build $1 bn Singapore data centre, first in Asia

At last, a simple 3D printer for metal

Chilled And Checked, Shaken And Not Stirred

A new way to remove ice buildup without power or chemicals

Rutgers scientists identify protein that may have existed when life began

Little star sheds light on young planets

Water worlds could support life, study says

Scientist develops database for stellar-exoplanet "exploration"

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter

Water discovered in the Great Red Spot indicates Jupiter might have plenty more

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.