. 24/7 Space News .
Youngest Accretion Disk Detected in Star Formation
by Staff Writers
Taipei, Taiwan (SPX) Sep 07, 2018

A zoom-in to the innermost region around the central protostar, showing the disk and outflow there. Asterisks mark the possible position of the central protostar. Gray arrows show the jet axis. Orange image shows the dusty disk at submillimeter wavelength obtained with ALMA. Blue and red images show the blueshifted and redshifted parts of the outflow coming out from the disk rotating around the jet axis. Credit: ALMA

An international team led by Chin-Fei Lee at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) has discovered a very small accretion disk formed around one of the youngest protostars, with the Atacama Large Millimeter/submillimeter Array (ALMA).

This discovery poses a constraint on current theory of disk formation stronger than before, by pushing the disk formation time by a factor of a few earlier. Moreover, a compact rotating outflow has been detected. It may trace a disk wind carrying away angular momentum from the disk and thus facilitate the disk formation.

"ALMA is so powerful that it can resolve an accretion disk with a radius as small as 15 astronomical units (AU)," says Chin-Fei Lee at ASIAA.

"Since this disk is about a few times younger than the previously resolved youngest disk, our result has provided a stronger constraint on current theory of disk formation by pushing the disk formation time by a factor of a few earlier.

Moreover, together with the previous results of the older disks, our disk result favors a model where the disk radius grows linearly with the protostellar mass, and thus supporting the 'early-start, slow-growth' scenario against the 'slow-start, rapid-growth' scenario for accretion disk formation around protostars."

HH 211 is one of the youngest protostellar systems in Perseus at a distance of about 770 light-years. The central protostar has an age of only about 10,000 years (which is about 2 millionths of the age of our Sun) and a mass of less than 0.05 solar mass. It drives a powerful bipolar jet and thus must accrete material efficiently.

Previous search at a resolution of about 50 AU only found a hint of a small dusty disk near the protostar. Now with ALMA at a resolution of 7 AU, which is about 7 times finer, the dusty disk at submillimeter wavelength not only has been detected but also spatially resolved.

It is a nearly edge-on accretion disk feeding the central protostar and has a radius of about 15 AU. The disk is thick, indicating that the submillimeter light emitting grains have yet to settle to the midplane. Unlike the previously resolved older edge-on disk HH 212 which appears as a large "hamburger," this younger edge-on disk appears as a small "bun."

Thus, it seems that an edge-on disk will grow from a small "bun" to a large "hamburger" in a later phase. Moreover, a compact rotating outflow has been detected, and it may trace a disk wind carrying away angular momentum from the disk and thus facilitate the disk formation.

The observations open up an exciting possibility of directly detecting and characterizing small disks around the youngest protostars through high-resolution imaging with ALMA, which provides strong constraints on theories of disk formation and thus the feeding process in star formation.

Research Report: "ALMA Observations of the Very Young Class 0 Protostellar System HH 211-mms: A 30-au Dusty Disk with a Disk-Wind Traced by SO?"

Related Links
Institute Of Astronomy And Astrophysics
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Water worlds could support life, study says
Chicago IL (SPX) Sep 03, 2018
The conditions for life surviving on planets entirely covered in water are more fluid than previously thought, opening up the possibility that water worlds could be habitable, according to a new paper from the University of Chicago and Pennsylvania State University. The scientific community has largely assumed that planets covered in a deep ocean would not support the cycling of minerals and gases that keeps the climate stable on Earth, and thus wouldn't be friendly to life. But the study, p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Going up! Japan to test mini 'space elevator'

Airbus-built ACLS Life Support Rack is ready for launch from Tanegashima

UAE announces first astronauts to go to space

Bahrain in talks with Russia to send astronauts into space

Alaska Aerospace To Host Open House And Town Hall Meeting In Kodiak

How an LWO and his team guided a Minotaur IV rocket out of the labyrinth

NASA, SpaceX Agree on Plans for Crew Launch Day Operations

India readies baby rockets to tap small satellites' market

Mars dust storm clears, raising hope for stalled NASA rover

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

Opportunity rover expected to call home as Martian dust storm clears

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

European Space Talks: sharing our passion for space

The world's lowest-cost global communications network

Successful capital raising sees Kleos Space Launch on the ASX

Artwork unveiled on exoplanet satellite

Access to 3D printing is changing the work in research labs

A new way to remove ice buildup without power or chemicals

Researchers use acoustic forces to print droplets that couldn't be printed before

All that is gold is not biochemically stable

A Direct-Imaging Mission to Study Earth-like Exoplanets

Rutgers scientists identify protein that may have existed when life began

Little star sheds light on young planets

Water worlds could support life, study says

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter

Water discovered in the Great Red Spot indicates Jupiter might have plenty more

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.