. 24/7 Space News .
EXO WORLDS
New Exoplanet Discovered by Team Led by Canadian Student
by Staff Writers
Montreal, Canada (SPX) Sep 10, 2018

Size comparison of (L-to-R) the Earth, Wolf 503b and Neptune. The color blue for Wolf 503b is imaginary; nothing is yet known about the atmosphere or surface of the planet. Credits: NASA Goddard/Robert Simmon (Earth), NASA / JPL (Neptune).

Wolf 503b, an exoplanet twice the size of Earth, has been discovered by an international team of Canadian, American and German researchers using data from NASA's Kepler Space Telescope. The find is described in a new study whose lead author is Merrin Peterson, an Institute for Research on Exoplanets (iREx) graduate student who started her master's degree at Universite de Montreal (UdeM) in May.

Wolf 503b is about 145 light-years from Earth in the Virgo constellation; it orbits its star every six days and is thus very close to it, about 10 times closer than Mercury is to the Sun.

"The discovery and confirmation of this new exoplanet was very rapid, thanks to the collaboration that I and my advisor, Bjorn Benneke, are a part of," Peterson said. "In May, when the latest release of Kepler K2 data came in, we quickly ran a program that allowed us to find as many interesting candidate exoplanets as possible. Wolf 503b was one of them."

The program the team used identifies distinct, periodic dips that appear in the light curve of a star when a planet passes in front of it. In order to better characterize the system Wolf 503b is part of, the astronomers first obtained a spectrum of the host star at the NASA Infrared Telescope Facility.

This confirmed the star is an old 'orange dwarf,' slightly less luminous than the Sun but about twice as old, and allowed a precise determination of the radius of both the star and its companion.

To confirm the companion was indeed a planet and to avoid making a false positive identification, the team obtained adaptive optics measurements from Palomar Observatory and also examined archival data. With these, they were able to confirm that there were no binary stars in the background and that the star did not have another, more massive companion that could be interpreted as a transiting planet.

Wolf 503b is interesting, firstly, because of its size. Thanks to the Kepler telescope, we know that most of the planets in the Milky Way that orbit close to their stars are about as big as Wolf 503b, somewhere between that the size of the Earth and Neptune (which is 4 times bigger than Earth). Since there is nothing like them in our solar system, astronomers wonder whether these planets are small and rocky 'super-Earths' or gaseous mini versions of Neptune.

One recent discovery also shows that there are significantly fewer planets that are between 1.5 and 2 times the size of Earth than those either smaller or larger than that. This drop, called the Fulton gap, could be what distinguishes the two types of planets from each other, researchers say in their study of the discovery, published in 2017.

"Wolf 503b is one of the only planets with a radius near the gap that has a star that is bright enough to be amenable to more detailed study that will better constrain its true nature," explained Bjorn Benneke, a UdeM professor and member of iREx and CRAQ.

"It provides a key opportunity to better understand the origin of this radius gap as well as the nature of the intriguing populations of 'super-Earths' and 'sub-Neptunes' as a whole."

The second reason for interest in the Wolf 503b system is that the star is relatively close to Earth, and thus very bright. One of the possible follow-up studies for bright stars is the measurement of their radial velocity to determine the mass of the planets in orbit around them. A more massive planet will have a greater gravitational influence on its star, and the variation in line-of-sight velocity of the star over time will be greater.

The mass, together with the radius determined by Kepler's observations, gives the bulk density of the planet, which in turn tells us something about its composition. For example, at its radius, if the planet has a composition similar to Earth, it would have to be about 14 times its mass. If, like Neptune, it has an atmosphere rich in gas or volatiles, it would be approximately half as massive.

Because of its brightness, Wolf 503 will also be a prime target for the upcoming James Webb Space Telescope. Using a technique called transit spectroscopy, it will be possible to study the chemical content of the planet's atmosphere, and to detect the presence of molecules like hydrogen and water. This is crucial to verify if it is similar to that of the Earth, Neptune or completely different from the atmospheres of planets in our solar system.

Similar observations can't be made of most planets found by Kepler, because their host stars are usually much fainter. As a result, the bulk densities and atmospheric compositions of most exoplanets are still unknown.

"By investigating the nature of Wolf 503b, we'll understand more about the structure of planets near the radius gap and more generally about the diversity of exoplanets present in our galaxy," said Peterson. "I look forward to learning more about it."

Research Report: "A 2 Earth Radius Planet Orbiting the Bright Nearby K-Dwarf Wolf 503," Merrin S. Peterson et al., 2018, to appear in the Astronomical Journal


Related Links
Institute For Research On Exoplanets
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Little star sheds light on young planets
Tokyo, Japan (SPX) Sep 05, 2018
Astronomers from the Department of Physics at the University of Tokyo discovered a dense disk of material around a young star, which may be a precursor to a planetary system. Their research could vastly improve models of how solar systems form, which would tell us more about our own place in the cosmos. Early in 2017, Assistant Professor Yoko Oya gave graduate student Yuki Okoda some recent complex data on a nearby star with which she could begin her Ph.D. Little did she realize that what she woul ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Going up! Japan to test mini 'space elevator'

Airbus-built ACLS Life Support Rack is ready for launch from Tanegashima

UAE announces first astronauts to go to space

Bahrain in talks with Russia to send astronauts into space

EXO WORLDS
Alaska Aerospace To Host Open House And Town Hall Meeting In Kodiak

Roscosmos Head Offers to Continue Rocket Engines Supply to US Despite Sanctions

Aerojet Rocketdyne demonstrates advanced electric propulsion capabilities

How an LWO and his team guided a Minotaur IV rocket out of the labyrinth

EXO WORLDS
Curiosity Surveys a Mystery Under Dusty Skies

Mars dust storm clears, raising hope for stalled NASA rover

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

EXO WORLDS
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

EXO WORLDS
Making space exploration real on Earth

European Space Talks: sharing our passion for space

The world's lowest-cost global communications network

Successful capital raising sees Kleos Space Launch on the ASX

EXO WORLDS
A new way to remove ice buildup without power or chemicals

Researchers use acoustic forces to print droplets that couldn't be printed before

Facebook to build $1 bn Singapore data centre, first in Asia

All that is gold is not biochemically stable

EXO WORLDS
A Direct-Imaging Mission to Study Earth-like Exoplanets

Youngest Accretion Disk Detected in Star Formation

Rutgers scientists identify protein that may have existed when life began

Little star sheds light on young planets

EXO WORLDS
Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter

Water discovered in the Great Red Spot indicates Jupiter might have plenty more









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.