24/7 Space News
EXO WORLDS
Is oxygen the cosmic key to alien technology?
Coined by astrophysics Adam Frank and Amedeo Balbi, the "oxygen bottleneck" describes the critical threshold that separates worlds capable of fostering technological civilizations from those that fall short. "You might be able to get biology-you might even be able to get intelligent creatures-in a world that doesn't have oxygen," Frank says, "but without a ready source of fire, you're never going to develop higher technology." Credit: University of Rochester illustration / Michael Osadciw
ADVERTISEMENT
     
Is oxygen the cosmic key to alien technology?
by Staff Writers
Rochester NY (SPX) Jan 03, 2024

In the quest to understand the potential for life beyond Earth, researchers are widening their search to encompass not only biological markers, but also technological ones. While astrobiologists have long recognized the importance of oxygen for life as we know it, oxygen could also be a key to unlocking advanced technology on a planetary scale.

In a new study published in Nature Astronomy, Adam Frank, the Helen F. and Fred H. Gowen Professor of Physics and Astronomy at the University of Rochester and the author of The Little Book of Aliens (Harper, 2023), and Amedeo Balbi, an associate professor of astronomy and astrophysics at the University of Roma Tor Vergata, Italy, outline the links between atmospheric oxygen and the potential rise of advanced technology on distant planets.

"We are ready to find signatures of life on alien worlds," Frank says. "But how do the conditions on a planet tell us about the possibilities for intelligent, technology-producing life?"

"In our paper, we explore whether any atmospheric composition would be compatible with the presence of advanced technology," Balbi says. "We found that the atmospheric requirements may be quite stringent."

Igniting cosmic technospheres
Frank and Balbi posit that, beyond its necessity for respiration and metabolism in multicellular organisms, oxygen is crucial to developing fire-and fire is a hallmark of a technological civilization. They delve into the concept of "technospheres," expansive realms of advanced technology that emit telltale signs-called "technosignatures"-of extraterrestrial intelligence.

On Earth, the development of technology demanded easy access to open-air combustion-the process at the heart of fire, in which something is burned by combining a fuel and an oxidant, usually oxygen. Whether it's cooking, forging metals for structures, crafting materials for homes, or harnessing energy through burning fuels, combustion has been the driving force behind industrial societies.

Tracing back through Earth's history, the researchers found that the controlled use of fire and the subsequent metallurgical advancements were only possible when oxygen levels in the atmosphere reached or exceeded 18 percent. This means that only planets with significant oxygen concentrations will be capable of developing advanced technospheres, and, therefore, leaving detectable technosignatures.

The oxygen bottleneck
The levels of oxygen required to biologically sustain complex life and intelligence are not as high as the levels necessary for technology, so while a species might be able to emerge in a world without oxygen, it will not be able to become a technological species, according to the researchers.

"You might be able to get biology-you might even be able to get intelligent creatures-in a world that doesn't have oxygen," Frank says, "but without a ready source of fire, you're never going to develop higher technology because higher technology requires fuel and melting."

Enter the "oxygen bottleneck," a term coined by the researchers to describe the critical threshold that separates worlds capable of fostering technological civilizations from those that fall short. That is, oxygen levels are a bottleneck that impedes the emergence of advanced technology.

"The presence of high degrees of oxygen in the atmosphere is like a bottleneck you have to get through in order to have a technological species," Frank says. "You can have everything else work out, but if you don't have oxygen in the atmosphere, you're not going to have a technological species."

Targeting extraterrestrial hotspots
The research, which addresses a previously unexplored facet in the cosmic pursuit of intelligent life, underscores the need to prioritize planets with high oxygen levels when searching for extraterrestrial technosignatures.

"Targeting planets with high oxygen levels should be prioritized because the presence or absence of high oxygen levels in exoplanet atmospheres could be a major clue in finding potential technosignatures," Frank says.

"The implications of discovering intelligent, technological life on another planet would be huge," adds Balbi. "Therefore, we need to be extremely cautious in interpreting possible detections. Our study suggests that we should be skeptical of potential technosignatures from a planet with insufficient atmospheric oxygen."

Research Report:The oxygen bottleneck for technospheres

Related Links
University of Rochester
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
A carbon-lite atmosphere could be a sign of water and life on other terrestrial planets
Boston MA (SPX) Jan 01, 2024
Scientists at MIT, the University of Birmingham, and elsewhere say that astronomers' best chance of finding liquid water, and even life on other planets, is to look for the absence, rather than the presence, of a chemical feature in their atmospheres. The researchers propose that if a terrestrial planet has substantially less carbon dioxide in its atmosphere compared to other planets in the same system, it could be a sign of liquid water - and possibly life - on that planet's surface. What's ... read more

ADVERTISEMENT
ADVERTISEMENT
EXO WORLDS
Designing the 'perfect' meal to feed long-term space travelers

NASA Revamps Contracts with Blue Origin and Starlab for LEO Station Projects Post-ISS Era

Exploring Venus and Beyond: NASA Funds Innovative Space Concepts for 2024

Insect compasses, fire-fighting vines: 2023's nature-inspired tech

EXO WORLDS
SpaceX sues to stop US hearing over fired workers

DTI Develops Innovative Plasma Engine for Spacecraft: Reduces Earth Fuel Dependency

ULA's Vulcan Centaur launches first American Moon lander in over 50 years

SpaceX set for Falcon Heavy USSF-52 mission to launch X-37B military space plane

EXO WORLDS
Sols 4059-4061: New Year, Old Challenges

Sols 4056-4058 Blog: "Ringing" in a New Year

Recent volcanism on Mars reveals a planet more active than previously thought

Sussex research takes us a step closer to sustaining human life on Mars

EXO WORLDS
China begins 2024 with key Kuaizhou 1A satellite launch

Shenzhou XVII astronauts set for their first spacewalk

China's commercial space sector achieves milestones with series of successful launches

China's space programme: Five things to know

EXO WORLDS
Euroconsult forecasts $75 Billion in growth for Middle East's Space Sector by 2032

Terran Orbital Reports Key Payment from Rivada and Strong Year-End Cash Position

First Batch of Starlink Satellites for Direct-to-Cell Service Launched by SpaceX

Wiseband and Rivada Space Networks join forces for Middle Eastern network expansion

EXO WORLDS
Rocket Lab to launch Space Situational Awareness mission for Spire and NorthStar

Researchers 3D print components for a portable mass spectrometer

L-SAR 01 Satellite Group Begins Operations, Enhancing China's Disaster Response

GESTRA space radar successfully enters final test phase

EXO WORLDS
A carbon-lite atmosphere could be a sign of water and life on other terrestrial planets

Three iron rings in a planet-forming disk

Is oxygen the cosmic key to alien technology?

Astronomers Discover Early Ring and Spiral Structures in Young Planetary Disks

EXO WORLDS
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.