24/7 Space News
EXO WORLDS
Three iron rings in a planet-forming disk
An artist's concept of the three-ringed structure in the planet-forming disk around HD 144432. Observations with the European Southern Observatory's (ESO) Very Large Telescope Interferometer (VLTI) found various silicate compounds and potentially iron, substances we also find in large amounts in the Solar System's rocky planets.
Three iron rings in a planet-forming disk
by Staff Writers for MPIA News
Heidelberg, Germany (SPX) Jan 09, 2024

A research team, including astronomers of the Max Planck Institute for Astronomy (MPIA), has detected a three-ringed structure in the nursery of planets in the inner planet-forming disk of a young star. This configuration suggests two Jupiter-mass planets are forming in the gaps between the rings. The detailed analysis is consistent with abundant solid iron grains complementing the dust composition. As a result, the disk likely harbours metals and minerals akin to those in the Solar System's terrestrial planets. It offers a glimpse into conditions resembling the early Solar System over four billion years ago during the formation of rocky planets such as Mercury, Venus, and Earth.

The origin of Earth and the Solar System inspires scientists and the public alike. By studying the present state of our home planet and other objects in the Solar System, researchers have developed a detailed picture of the conditions when they evolved from a disk made of dust and gas surrounding the infant sun some 4.5 billion years ago.

Three rings hinting at two planets
With the breathtaking progress made in star and planet formation research aiming at far-away celestial objects, we can now investigate the conditions in environments around young stars and compare them to the ones derived for the early Solar System. Using the European Southern Observatory's (ESO) Very Large Telescope Interferometer (VLTI), an international team of researchers led by Jozsef Varga from the Konkoly Observatory in Budapest, Hungary, did just that. They observed the planet-forming disk of the young star HD 144432, approximately 500 light-years away.

"When studying the dust distribution in the disk's innermost region, we detected for the first time a complex structure in which dust piles up in three concentric rings in such an environment," says Roy van Boekel. He is a scientist at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany and a co-author of the underlying research article to appear in the journal Astronomy and Astrophysics. "That region corresponds to the zone where the rocky planets formed in the Solar System", van Boekel adds. Compared to the Solar System, the first ring around HD 144432 lies within Mercury's orbit, and the second is close to Mars's trajectory. Moreover, the third ring roughly corresponds to Jupiter's orbit.

Up to now, astronomers have found such configurations predominantly on larger scales corresponding to the realms beyond where Saturn circles the Sun. Ring systems in the disks around young stars generally point to planets forming within the gaps as they accumulate dust and gas on their way. However, HD 144432 is the first example of such a complex ring system so close to its host star. It occurs in a zone rich in dust, the building block of rocky planets like Earth. Assuming the rings indicate the presence of two planets forming within the gaps, the astronomers estimated their masses to resemble roughly that of Jupiter.

Conditions may be similar to the early Solar System
The astronomers determined the dust composition across the disk up to a separation from the central star that corresponds to the distance of Jupiter from the Sun. What they found is very familiar to scientists studying Earth and the rocky planets in the Solar System: various silicates (metal-silicon-oxygen compounds) and other minerals present in Earth's crust and mantle, and possibly metallic iron as is present in Mercury's and Earth's cores. If confirmed, this study would be the first to have discovered iron in a planet-forming disk.

"Astronomers have thus far explained the observations of dusty disks with a mixture of carbon and silicate dust, materials that we see almost everywhere in the Universe," van Boekel explains. However, from a chemical perspective an iron and silicate mixture is more plausible for the hot, inner disk regions. And indeed, the chemical model that Varga, the main author of the underlying research article, applied to the data yields better-fitting results when introducing iron instead of carbon.

Furthermore, the dust observed in the HD 144432 disk can be as hot as 1800 Kelvin (approx. 1500 degrees Celsius) at the inner edge and as moderate as 300 Kelvin (approx. 25 degrees Celsius) farther out. Minerals and iron melt and recondense, often as crystals, in the hot regions near the star. In turn, carbon grains would not survive the heat and instead be present as carbon monoxide or carbon dioxide gas. However, carbon may still be a significant constituent of the solid particles in the cold outer disk, which the observations carried out for this study cannot trace.

Iron-rich and carbon-poor dust would also fit nicely with the conditions in the Solar System. Mercury and Earth are iron-rich planets, while the Earth contains relatively little carbon. "We think that the HD 144432 disk may be very similar to the early Solar System that provided lots of iron to the rocky planets we know today," says van Boekel. "Our study may pose as another example showing that the composition of our Solar System may be quite typical."

Interferometry resolves tiny details
Retrieving the results was only possible with exceptionally high-resolution observations, as provided by the VLTI. By combining the four VLT 8.2-metre telescopes at ESO's Paranal Observatory, they can resolve details as if astronomers would employ a telescope with a primary mirror of 200 metres in diameter. Varga, van Boekel and their collaborators obtained data using three instruments to achieve a broad wavelength coverage ranging from 1.6 to 13 micrometres, representing infrared light.

MPIA provided vital technological elements to two devices, GRAVITY and the Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE). One of MATISSE's primary purposes is to investigate the rocky planet-forming zones of disks around young stars. "By looking at the inner regions of protoplanetary disks around stars, we aim to explore the origin of the various minerals contained in the disk - minerals that later will form the solid components of planets like the Earth," says Thomas Henning, MPIA director and co-PI of the MATISSE instrument.

However, producing images with an interferometer like the ones we are used to obtaining from single telescopes is not straightforward and very time-consuming. A more efficient use of precious observing time to decipher the object structure is to compare the sparse data to models of potential target configurations. In the case of the HD 144432 disk, a three-ringed structure represents the data best.

How common are structured, iron-rich planet-forming disks?
Besides the Solar System, HD 144432 appears to provide another example of planets forming in an iron-rich environment. However, the astronomers will not stop there. "We still have a few promising candidates waiting for the VLTI to take a closer look at", van Boekel points out.

In earlier observations, the team discovered a number of disks around young stars that indicate configurations worth revisiting. However, they will reveal their detailed structure and chemistry using the latest VLTI instrumentation. Eventually, the astronomers may be able to clarify whether planets commonly form in iron-rich dusty disks close to their parent stars.

Research Report:Mid-infrared evidence for iron-rich dust in the multi-ringed inner disk of HD 144432

Related Links
Max Planck Institute for Astronomy, Heidelberg
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Astronomers Discover Early Ring and Spiral Structures in Young Planetary Disks
Los Angeles CA (SPX) Jan 09, 2024
In a significant advancement in our understanding of planetary formation, an international team of astronomers has uncovered ring and spiral structures in exceptionally young planetary disks. This discovery, presented at the 243rd Meeting of the American Astronomical Society, suggests that the process of planet formation may commence much sooner than previously believed. The team, utilizing the National Radio Astronomy Observatory's (NRAO) Atacama Large Millimeter/submillimeter Array (ALMA), captu ... read more

ADVERTISEMENT
ADVERTISEMENT
EXO WORLDS
Ax-3: A Step Forward in Long-Duration Space Missions with Advanced Tech Experiments

Voyager Space and Airbus forge new path with Starlab Space LLC Joint Venture

Revolutionizing Space Habitats: Aurelia Institute's TESSERAE for Biotech Studies

ISS National Lab opens call for technology development research proposals

EXO WORLDS
China's Gravity 1 sets record for solid rocket fuels in maiden launch

Self-eating rocket could help UK take a big bite of space industry

China says successfully launches Einstein Probe satellite

DTI Develops Innovative Plasma Engine for Spacecraft: Reduces Earth Fuel Dependency

EXO WORLDS
Ready for Contact Science: Sols 4062-4063

Potential solvents identified for building on Moon and Mars

HERA Mission: NASA's 45-Day Mars Simulation to Study Human Responses

NASA's CHAPEA mission reaches 200-Day milestone in Mars Analog Study

EXO WORLDS
Tianxing 1B satellite launched by Kuaizhou 1A to conduct space environment survey

China begins 2024 with key Kuaizhou 1A satellite launch

Shenzhou XVII astronauts set for their first spacewalk

China's commercial space sector achieves milestones with series of successful launches

EXO WORLDS
Wiseband and Rivada Space Networks join forces for Middle Eastern network expansion

Iridium announces Project Stardust for Global, Standards-Based IoT Connectivity

Euroconsult forecasts $75 Billion in growth for Middle East's Space Sector by 2032

First Batch of Starlink Satellites for Direct-to-Cell Service Launched by SpaceX

EXO WORLDS
Skeyeon unveils novel patent for Enhanced VLEO satellite communication

Researchers release open-source space debris model

Spire Global sets to revolutionize space traffic management with Northstar's SSA satellites

D-Orbit Secures Record euro 100m in Series C Funding, Advancing Space Logistics and In-Orbit Services

EXO WORLDS
Unlocking the secrets of a "hot Saturn" and its spotted star

Three iron rings in a planet-forming disk

Astronomers make rare exoplanet discovery

Astronomers Discover Early Ring and Spiral Structures in Young Planetary Disks

EXO WORLDS
New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.