![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Tokyo, Japan (SPX) Mar 08, 2021
Earth's surface environments are highly oxygenated - from the atmosphere to the deepest reaches of the oceans, representing a hallmark of active photosynthetic biosphere. However, the fundamental timescale of the oxygen-rich atmosphere on Earth remains uncertain, particularly for the distant future. Solving this question has great ramifications not only for the future of Earth's biosphere but for the search for life on Earth-like planets beyond the solar system. A new study published in Nature Geoscience this week tackles this problem using a numerical model of biogeochemistry and climate and reveals that the future lifespan of Earth's oxygen-rich atmosphere is approximately one billion years. "For many years, the lifespan of Earth's biosphere has been discussed based on scientific knowledge about the steadily brightening of the sun and global carbonate-silicate geochemical cycle. One of the corollaries of such a theoretical framework is a continuous decline in atmospheric CO2 levels and global warming on geological timescales. Indeed, it is generally thought that Earth's biosphere will come to an end in the next 2 billion years due to the combination of overheating and CO2 scarcity for photosynthesis. If true, one can expect that atmospheric O2 levels will also eventually decreases in the distant future. However, it remains unclear exactly when and how this will occur," says Kazumi Ozaki, Assistant Professor at Toho University. To examine how Earth's atmosphere will evolve in the future, Ozaki and Christopher Reinhard, Associate Professor at Georgia Institute of Technology, constructed an Earth system model which simulates climate and biogeochemical processes. Because modelling future Earth evolution intrinsically has uncertainties in geological and biological evolutions, a stochastic approach was adopted, enabling the researchers to obtain a probabilistic assessment of the lifespan of an oxygenated atmosphere. Ozaki ran the model more than 400 thousand times, varying model parameter, and found that Earth's oxygen-rich atmosphere will probably persist for another one billion years (1.08+/-0.14 (1s) billion years) before rapid deoxygenation renders the atmosphere reminiscent of early Earth before the Great Oxidation Event around 2.5 billion years ago. "The atmosphere after the great deoxygenation is characterized by an elevated methane, low-levels of CO2, and no ozone layer. The Earth system will probably be a world of anaerobic life forms," says Ozaki. Earth's oxygen-rich atmosphere represents an important sign of life that can be remotely detectable. However, this study suggests that Earth's oxygenated atmosphere would not be a permanent feature, and that the oxygen-rich atmosphere might only be possible for 20-30% of the Earth's entire history as an inhabited planet. Oxygen (and photochemical byproduct, ozone) is most accepted biosignature for the search for life on the exoplanets, but if we can generalize this insight to Earth-like planets, then scientists need to consider additional biosignatures applicable to weakly-oxygenated and anoxic worlds in the search for life beyond our solar system.
![]() ![]() NASA Mission seeks to understand bright night-shining clouds by creating one Greenbelt MD (SPX) Feb 24, 2021 Since the late 1800s, observers have searched the polar skies for elusive, high-flying clouds that shine in the darkness. These polar mesospheric clouds, or PMCs, are wispy swarms of ice crystals that form in the late spring and summer over the North and South Poles. Observers spot them best in the twilight hours, when the Sun illuminates them from beyond the horizon against a dark sky. More than just a pretty sight, they also hold clues to what's going on in Earth's atmosphere. "What has attracte ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |