. 24/7 Space News .
EARTH OBSERVATION
NASA Mission seeks to understand bright night-shining clouds by creating one
by Miles Hatfield for GSFC News
Greenbelt MD (SPX) Feb 24, 2021

Time lapse of the Super Soaker launch. Three rockets launched with the mission, two using vapor tracers to track wind movement and one releasing a water canister to seed a polar mesospheric cloud. The green laser beam visible at the top left is the LIDAR beam used to measure the artificial cloud.

Since the late 1800s, observers have searched the polar skies for elusive, high-flying clouds that shine in the darkness. These polar mesospheric clouds, or PMCs, are wispy swarms of ice crystals that form in the late spring and summer over the North and South Poles. Observers spot them best in the twilight hours, when the Sun illuminates them from beyond the horizon against a dark sky. More than just a pretty sight, they also hold clues to what's going on in Earth's atmosphere.

"What has attracted a lot of interest in these clouds is their sensitivity - they're occurring just on the edge of viability in the upper atmosphere, where it's incredibly dry and incredibly cold," said Richard Collins, space physicist at the University of Alaska, Fairbanks and lead author of the paper. "They're a very sensitive indicator of changes in the upper atmosphere - changes in temperature and/or changes in water vapor."

Collins and his collaborators suspected that PMCs could be associated with cooling in the upper atmosphere - and he set out to try to understand the microphysics of the process. In a new paper published in the Journal of Geophysical Research, they shared results from NASA's Super Soaker mission, a small suborbital rocket launched in Alaska, showing that water vapor in our upper atmosphere can precipitously lower the surrounding temperature and initiate one of these bright shining clouds.

To test this out, they decided to release a small amount of water and create their very own PMC. They specifically launched at a time - January in the Arctic - which is typically inhospitable to the formation of PMCs, hoping they could nevertheless catalyze one.

"We wanted to make sure to avoid mixing artificially created and naturally occurring PMCs," said Irfan Azeem, space physicist at Astra, LLC in Louisville, Colorado and principal investigator of the Super Soaker mission. "That way we could be confident that any PMC we observed was attributable to the Super Soaker experiment."

The Super Soaker rocket launched in the early morning hours of January 26, 2018, from Poker Flat research range in Fairbanks, Alaska. It reached an altitude of about 53 miles when the team triggered the explosion of their cannister of about 485 pounds of water. Eighteen seconds later, the beam from a ground-based laser radar detected the faint echo of a PMC.

The researchers plugged those measurements into a model that simulated PMC production. They wanted to know how the air where the water was released would have had to change in order to create a PMC like the one they observed.

"We don't have direct temperature measurements of the cloud, but we can infer that temperature change based on what we think is required for the cloud to form," Collins said.

The model showed that significant cooling must have happened. "The only way with the amount of water present that we could get a cloud form was to say that in the body of the cloud, there was a temperature drop - about 45 degrees Fahrenheit ( 25 degrees Celsius) in temperature." Simply introducing water to the region, the results suggested, led to a significant local temperature drop.

"This is the first time anyone has experimentally demonstrated that PMC formation in the mesosphere is directly linked to cooling by water vapor itself," Azeem said.

The paper goes on to connect the results to the reality of space traffic, as water vapor is a common byproduct of satellites and rocket launches. In the days of the space shuttle, for instance, a single launch was responsible for about 20% of the PMC ice mass observed in a season.

But more water vapor won't mean temperature dropping without bounds, Collins explains. PMCs act like a thermostat. As the water vapor freezes, it turns into ice crystals. But those ice crystals absorb heat even better than water in vapor form. As the ice crystals heat up, they eventually sublimate back into vapor, and the cycle repeats.

"And so there's a yo-yo back and forth, regulating the temperature of the change produced by the injected water vapor," Collins said.

Still, increased water vapor will affect how and when PMCs form. For those looking to predict PMC formation, keeping track of both natural and human-injected water vapor will be key to success.

"It depends on the amount of space traffic, on what happens if the water vapor budget up there increases," Collins said. "If we had a major amount of new traffic then we're no longer in an ambient natural environment and we would have to start modeling this."

Research paper


Related Links
Sounding Rockets at NASA
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Saharan dust expected to hit Europe again this weekend
Paris (AFP) Feb 19, 2021
Dust and sand particles whipped up from the Sahara will once again blanket skies over Europe this weekend, impacting air quality, the European Union's Copernicus satellite monitoring service said Friday. It said wind predictions showed a "substantial plume" of Saharan dust would hit southern Europe over the weekend into next week, reaching as far north as Norway. Mark Parrington, senior scientist at the Copernicus Atmosphere Monitoring Service, said that like a similar event earlier in February, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Astronauts training for space station missions

Russian Progress Cargo Craft Docks to Station

National Student Space Conference 2021

Several tech payloads from ISS National Lab on Northrop Grumman CRS-15

EARTH OBSERVATION
Russia plans at least 10 launches from Baikonur in 2021

DLR ready to test first upper stage for Ariane 6

NASA assigns astronauts to next SpaceX Crew-4 mission to ISS

Kremlin 'interested' in Elon Musk-Putin conversation

EARTH OBSERVATION
Mars rover mission could drive research for decades to come

Perseverance hits 'bullseye' on Mars landing

Skoltech's recent achievement takes us one step closer to Mars

'7 minutes of terror': Perserverance rover's nail-biting landing phase

EARTH OBSERVATION
Chinese tracking vessel sets sail for monitoring missions in Indian Ocean

China's 'space dream': A Long March to the Moon and beyond

Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

EARTH OBSERVATION
French village says 'non' to Elon Musk's space-age internet

Axiom Space raises $130M in Series B funding

SpaceX launches Starlink satellites, loses booster in sea

First Airbus Eurostar Neo satellite is born

EARTH OBSERVATION
More sustainable recycling of plastics

'We just want to play': Iran gamers battle reality of US sanctions

Sloshing quantum fluids of light and matter to probe superfluidity

Arch Mission Foundation announces first in series of Earth Archives

EARTH OBSERVATION
On the quest for other Earths

NASA's TESS discovers new worlds in a river of young stars

Lasers reveal the secret interior of rocky exoplanets

A new way of forming planets

EARTH OBSERVATION
Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.