. 24/7 Space News .
STELLAR CHEMISTRY
How big is a neutron star
by Staff Writers
Hannover, Germany (SPX) Mar 11, 2020

Numerical relativity simulation of two inspiraling and merging neutron stars. Higher densities are shown in orange, lower densities are shown in blue. [less]

An international research team led by members of the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) has obtained new measurements of how big neutron stars are. To do so, they combined a general first-principles description of the unknown behavior of neutron star matter with multi-messenger observations of the binary neutron star merger GW170817.

Their results, which appeared in Nature Astronomy on March 9, are more stringent by a factor of two than previous limits and show that a typical neutron star has a radius close to 11 kilometers. They also find that neutron stars merging with black holes are in most cases likely to be swallowed whole, unless the black hole is small and/or rapidly rotating. This means that while such mergers might be observable as gravitational-wave sources, they would be invisible in the electromagnetic spectrum.

"Binary neutron star mergers are a gold mine of information!" says Collin Capano, researcher at the AEI Hannover and lead author of the Nature Astronomy study.

"Neutron stars contain the densest matter in the observable universe. In fact, they are so dense and compact, that you can think of the entire star as a single atomic nucleus, scaled up to the size of a city. By measuring these objects' properties, we learn about the fundamental physics that governs matter at the sub-atomic level."

"We find that the typical neutron star, which is about 1.4 times as heavy as our Sun, has a radius of about 11 kilometers," says Badri Krishnan, who leads the research team at the AEI Hannover. "Our results limit the radius to likely be somewhere between 10.4 and 11.9 kilometers. This is a factor of two more stringent than previous results."

Binary Neutron Star Mergers as Astrophysical Treasure Trove
Neutron stars are compact, extremely dense remnants of supernova explosions. They are about the size of a city with up to twice the mass of our Sun. How the neutron-rich, extremely dense matter behaves is unknown, and it is impossible to create such conditions in any laboratory on Earth. Physicists have proposed various models (equations of state), but it is unknown which (if any) of these models correctly describe neutron star matter in nature.

Mergers of binary neutron stars - such as GW170817, which was observed in gravitational waves and the entire electromagnetic spectrum in August 2017 - are the most exciting astrophysical events when it comes to learning more about matter at extreme conditions and the underlying nuclear physics. From this, scientists can in turn determine physical properties of neutron stars such as their radius and mass.

The research team used a model based on a first-principles description of how subatomic particles interact at the high densities found inside neutron stars. Remarkably, as the team shows, theoretical calculations at length scales less than a trillionth of a millimeter can be compared with observations of an astrophysical object more than a hundred million light-years away.

"It's a bit mind boggling," says Capano. "GW170817 was caused by the collision of two city-sized objects 120 million years ago, when dinosaurs were walking around here on Earth. This happened in a galaxy a billion trillion kilometers away. From that, we have gained insight into sub-atomic physics."

How Big Is a Neutron Star?
The first-principles description used by the researchers predicts an entire family of possible equations of state for neutron stars, which are directly derived from nuclear physics.

From this family, the authors selected those members that are most likely to explain different astrophysical observations; they picked models which agree with gravitational-wave observations of GW170817 from public LIGO and Virgo data, which produce a short-lived hyper-massive neutron star as result of the merger, and which agree with known constraints on the maximum neutron star mass from electromagnetic counterpart observations of GW170817.

This not only allowed the researchers to derive robust information on dense-matter physics, but also to obtain the most stringent limits on the size of neutron stars to date.

Future Gravitational-Wave and Multi-Messenger Observations
"These results are exciting, not just because we have been able to vastly improve neutron star radii measurements, but because it gives us a window into the ultimate fate of neutron stars in merging binaries," says Stephanie Brown, co-author of the publication and a PhD student at the AEI Hannover.

The new results imply that, with an event such as GW170817, the LIGO and Virgo detectors at design sensitivity will be able to easily distinguish, from gravitational waves alone, whether two neutron stars or two black holes have merged. For GW170817, observations in the electromagnetic spectrum were crucial to make that distinction.

The research team also finds that for mixed binaries (a neutron star merging with a black hole), gravitational-wave merger observations alone will have a hard time distinguishing such events from binary black holes. Observations in the electromagnetic spectrum or gravitational waves from after the merger will be crucial to tell them apart.

However, it turns out that the new results also imply that multi-messenger observations of mixed binary mergers are unlikely to happen. "We have shown that in almost all cases the neutron star will not be torn apart by the black hole and rather swallowed whole," explains Capano.

"Only when the black hole is very small or rapidly spinning, can it disrupt the neutron star before swallowing it; and only then can we expect to see anything besides gravitational waves."

A Bright Future Ahead
In the next decade, the existing gravitational-wave detectors will become even more sensitive, and additional detectors will begin observing. The research team expects more very loud gravitational-wave detections and possible multi-messenger observations from merging binary neutron stars. Each of these mergers would provide wonderful opportunities to learn more about neutron star and nuclear physics.

Research Report: "GW170817: Stringent Constraints on Neutron-Star Radii from Multimessenger Observations and Nuclear Theory"


Related Links
Max Planck Institute For Gravitational Physics
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
A puzzle piece from stellar chemistry could change our measurements of cosmic expansion
Heidelberg, Germany (SPX) Mar 06, 2020
Astronomers led by Maria Bergemann (Max-Planck-Institute for Astronomy) have performed chemical measurements on stars that could markedly change the way cosmologists measure the Hubble constant and determine the amount of so-called dark energy in our universe. Using improved models of how the presence of chemical elements affects a star's spectrum, the researchers found that so-called supernovae Type Ia have different properties than previously thought. Based on assumption about their brightness, cosmol ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA update on Starliner flight test review

NASA: Boeing software team had too much power over Starliner capsule

Study confirms space-grown lettuce nutritious, safe

An astronaut's guide to applying to be an astronaut

STELLAR CHEMISTRY
SpaceX announces partnership to send tourists to ISS

SpaceX Dragon heads to Space Station for Monday docking

Aerojet Rocketdyne displays powerful hydrogen rocket engine at Infinity Science Center

Black Arrow marks 50 years since one and only UK satellite launch

STELLAR CHEMISTRY
Organic molecules discovered by Curiosity Rover consistent with early life on Mars

Moreux Crater on Mars offers evidence of dunes and glacial processes

Virginia Middle School names NASA's next Mars rover Perseverance

Curiosity Mars Rover Snaps Highest-Resolution Panorama Yet

STELLAR CHEMISTRY
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

STELLAR CHEMISTRY
Making aerospace workforce training a national mandate for the future

Blast off: space minnow Indonesia eyes celestial success

Elon Musk dismisses astronomy concerns over Starlink network

The impact of satellite constellations on astronomical observations

STELLAR CHEMISTRY
Discovery points to origin of mysterious ultraviolet radiation

Using molecules to draw on quantum materials

SpaceLogistics selected by DARPA as Commercial Partner for Robotic Servicing Mission

3D-printed thrust chamber passes first tests for Vega evolutions

STELLAR CHEMISTRY
New technique could elucidate earliest stages of planet's life

Orbital tilt measurements in youngest planetary star system ever

Astronomers pinpoint rare binary brown dwarf

Safety zone saves giant moons from fatal plunge

STELLAR CHEMISTRY
Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

Findings from Juno Update Jupiter Water Mystery









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.