. | . |
Using molecules to draw on quantum materials by Staff Writers Quebec City, Canada (SPX) Mar 05, 2020
Over millennia, civilizations progressed through the Stone, Bronze, and Iron Ages. Now the time has come for quantum materials to change the way we live, thanks in part to research conducted at the Institut National de la Recherche Scientifique (INRS) and McGill University. Professor Emanuele Orgiu, a researcher at INRS and a specialist in quantum materials. These materials are only a few atoms thick, but have remarkable optical, magnetic, and electrical properties. Professor Orgiu's research focuses on creating patterns on the surface of quantum materials in order to alter their properties. "The shape of the drawings helps determine the properties imparted upon the surface," he explains. His work has potential applications for (opto)electronic devices such as transistors and photosensors, but also for biosensing devices. The quantum materials expert has just taken a big step forward by synthesizing macrocycles--large circular molecules--on a graphite surface. This material consists of a stack of graphene, a single atom-thick sheet of carbon. Graphene is considered a quantum material. "Think of macrocycles as tiny Lego blocks. It's impossible to build a ring in solution, a homogeneous mixture in which the blocks are diluted. But you can do it if you put them on a table," said Professor Orgiu, lead author on a new study, the results of which were published online on February 18 in the journal ACS Nano. In short, the postdoctoral researcher in Orgiu's group, Chaoying Fu, who is the first author of the study, has found a way to use macrocycles to draw molecular patterns on a material's surface. "The macrocycles are deposited on the surface in solution and only the molecules are left once the liquid has evaporated. We can predict how they will fit together, but the alignment happens naturally through the interactions with neighbouring molecules and the surface," Professor Orgiu explains. The study was conducted in collaboration with Dmitrii F. Perepichka, a professor in McGill's Department of Chemistry, whose expertise helped understand how certain molecules could arrange themselves on the surface of graphite. "This is a great example of the power of a multidisciplinary approach where we combined organic synthesis and surface science. The level of control we achieved over the shape and the structure of synthesized molecules is quite remarkable," says Perepichka. Orgiu said the shape and size of macrocycles made them the ideal candidate to draw on the graphite's surface. "The advantage of these molecules is the large pores in their structure. We may eventually be able to use our macrocycles as a frame and decorate the pores with biomolecules that would promote biosensing properties of the surface. This is certainly one of our next steps for future projects."
Research Report: "Surface-Confined Macrocyclization via Dynamic Covalent Chemistry"
Hope for a new permanent magnet that's cheap and sustainable Leeds UK (SPX) Mar 04, 2020 Scientists have made a breakthrough in the search for a new, sustainable permanent magnet. Most permanent magnets are made from alloys of rare earth metals - but the mining and processing of these materials produces toxic by-products, leading to ecological challenges around rare-earth mines and refineries. At the same time, demand for permanent magnets is increasing as they are a common component in renewable energy, consumer electronics and electric-powered vehicles. A team of scientists, l ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |