. | . |
High-tech material in a salt crust by Staff Writers Juelich, Germany (SPX) Apr 08, 2019
MAX phases are viewed as promising materials for the future, for example for turbines in power plants and aircraft, space applications, or medical implants. A new method developed by scientists from Forschungszentrum Julich now makes it possible to produce this desirable material class on an industrial scale for the first time: a crust of salt protects the raw material from oxidation at a production temperature of more than 1,000 degrees Celsius - and can then simply be washed off with water. The method, which was recently published in the journal Nature Materials, can also be applied to other high-performance materials. MAX phases unite the positive properties of both ceramics and metals. They are heat resistant and lightweight like ceramics, yet less brittle, and can be plastically deformed like metals. Furthermore, they are the material basis of MXenes, a largely unexplored class of compound that are similar to the "miracle material" graphene and have extraordinary electronic properties. "In the past, there was no suitable method for producing MAX phases in powder form, which would be advantageous for further industrial processing. This is why MAX phases have not played any practical role in industrial application so far," explains Junior Professor Dr. Jesus Gonzalez-Julian, young investigators group leader at Forschungszentrum Julich.
The salt strategy "A bath of molten salt thus protects the material and prevents it from coming in contact with atmospheric oxygen," explains Apurv Dash, lead author of the study published in Nature Materials and doctoral researcher at Forschungszentrum Julich. At the same time, the salt acts as a separating agent: the components no longer bond together to form a compact solid, and allow the direct production of fine-grained powders. This is important because it avoids an additional long, energy- intensive milling process. As a positive side effect, the salt bath also reduces the synthesis temperature necessary to form the desired compound, which will additionally cut energy and production costs.
With just salt and water "Potassium bromide, the salt we use, is special because when pressurized, it becomes completely impermeable at room temperature. "We have now demonstrated that it is sufficient to encapsulate the raw materials tightly enough in a salt pellet to prevent contact with oxygen - even before the melting point of the salt is reached at 735 degrees Celsius. A protective atmosphere is thus no longer necessary," explains Apurv Dash. As with many scientific discoveries a little bit of luck played its part in inventing the method: vacuum furnaces are scarce because they are so expensive and they take a lot of effort to clean. To produce his powder, the Julich doctoral researcher therefore resorted to testing a normal air furnace - successfully! The new method is not limited to a certain material. The researchers have already produced a multitude of different MAX phases and other high-performance materials, such as titanium alloys for bioimplants and aircraft engineering. As a next step, the scientists are now planning to investigate industrial processes with which these powders can be processed further.
Teaching computers to intelligently design 'billions' of possible materials Columbia MO (SPX) Apr 03, 2019 Discovering how atoms - such as a single layer of carbon atoms found in graphene, one of the world's strongest materials - work to create a solid material is currently a major research topic in the field of materials science, or the design and discovery of new materials. At the University of Missouri, researchers in the College of Engineering are applying one of the first uses of deep learning - the technology computers use to intelligently perform tasks such as recognizing language and driving autonomo ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |