. 24/7 Space News .
Exoplanet Under the Looking Glass
by Staff Writers
Heidelberg, Germany (SPX) Mar 28, 2019

Recent file image of the HR-8799 planetary system.

For the first time, astronomers have succeeded in investigating an exoplanet using optical interferometry. The new method allowed astronomers to measure the position of the exoplanet HR 8799e with unprecedented accuracy. Also, the planet's spectrum was recorded as precisely as never before, paving the way for future searches for life on other planets. The measurements, which were obtained with the participation of astronomers from the Max Planck Institute for Astronomy (MPIA), were performed with the GRAVITY instrument at ESO's Paranal Observatory.

Investigating exoplanets in detail and without confounding noise is difficult. In general, with increasing distance, it becomes more and more difficult to image fine details of an astronomical object.

Furthermore, exoplanets are typically buried in the glare of their much brighter host stars. Now, a group of researchers led by Sylvestre Lacour of the Observatoire de Paris and also including MPIA researchers, has been able to demonstrate a new method of investigation that mitigates these problems and thereby provides a new perspective on exoplanets.

Key to the new technique is the GRAVITY instrument, which has been in operation at the European Southern Observatory's Very Large Telescope Interferometer (VLTI) at Paranal Observatory in Chile since 2016. Using a technique known as interferometry, which exploits the wave nature of light, GRAVITY is able to combine the light of several telescopes to form a common image.

Combined, the four 8-metre-telescopes of the Very Large Telescope (VLT) can make images so detailed that a single telescope would need to have a mirror diameter of approximately 100 meters to provide the same level of detail.

The study of the exoplanet HR 8799e that has now been published is the first to demonstrate the potential of interferometric observations for the investigation of exoplanets in practice.

The planet is one of only a few (about 120 out of 4,000) for which direct images exist; so far, most exoplanets have only been detected indirectly. HR 8799e is part of a young five-body-system, a mere 130 light-years away from us, which consists of the star HR 8799 and four planets (as far as we know, at least). All of the planets are gas giants with between 5 and 10 times the mass of Jupiter.

Among the four, HR 8799e is the one closest to the host star. That is why it is particularly difficult to clearly distinguish light from the star and light from the planet in observations. The star's radiation is about 20,000 times greater than that of the exoplanet - under normal circumstances, the star drowns out the planet's light. Since HR 8799e is so close to its host star, the effect is particularly large.

GRAVITY was able to deliver much more detailed images of the exoplanet than its predecessor instruments. With the help of these high-resolution images, the astronomers were able to calculate the distance between the star and the planet ten times more accurately than before. This allows a more precise determination of the planet's orbit, which, according to the new measurements, appears to be slightly inclined relative to the orbital plane of the other planets of the HR 8799 system.

Interferometry is a particularly powerful way to distinguish between the light of the planet and the light of the star - the separation of the two is much cleaner than with conventional method of blocking out the star's light using a mask ("coronagraphy"). With this clean separation, the astronomers were able to measure the spectrum of HR 8799e much more accurately than before.

The spectrum shows that the atmosphere of the relatively young gas planet, which is 30 million years old, has a temperature of a respectable 880C (1150 K). But the spectrum also had a surprise in store. Dr. Silvia Scheithauer from the MPIA, who contributed to the GRAVITY project, says: "Going by the planets of our own solar system, we would expect large amounts of methane in the atmosphere of a gas planet this hot.

But surprisingly, the atmosphere of HR 8799e hardly contains any methane it all. Instead, we found major amounts of carbon monoxide!" This shows how much astronomers still have to learn about planet formation - but it also underlines the key role of atmospheric spectroscopy for learning about exoplanets.

Currently, the astronomers are planning long-term follow-up observations with GRAVITY. With this additional data, the astronomer should be able to reconstruct the orbit of HR 8799e with such great accuracy that there would be another first: the first time where the motion within a spatially resolved exoplanet system would reveal not only the gravitational influence of the central star, but also the mutual attraction of the gas planets.

Such observations should allow for an accurate estimate of the masses of the four gas planets. To the best of our current knowledge, HR 8799e needs between 40 and 50 years for one complete orbit.

The new observations are also of interest for future searches for traces of life in the universe. The main current search strategy aims to detecting telltale signs of life in the spectrum of an exoplanet's atmosphere. The successful GRAVITY observation opens up a way for taking spectra of this kind with greater accuracy.

"First Direct Detection of an Exoplanet by Optical Interferometry," GRAVITY Collaboration, S. Lacour et al. 2019 March 27, Astronomy and Astrophysics

Related Links
Max Planck Institute For Astronomy
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Icy giant planets in the laboratory
Dresden, Germany (SPX) Mar 27, 2019
Giant planets like Uranus and Neptune may contain much less free hydrogen than previously assumed. Researchers from the German Helmholtz-Zentrum Dresden-Rossendorf (HZDR) drove shock waves through two different types of plastic to reach the same temperatures and pressures present inside such planets, and observed the behavior using ultra-strong X-ray laser pulses. Unexpectedly, one of these plastics kept its crystalline structure even at the most extreme pressures reached. Since the icy giant inte ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ESA studies water in space

Spacewalkers Complete Battery Swaps for Station Power Upgrades

The time to apply to space for humanity is now!

NASA schedules its first women-only spacewalk

SLS engine section approaches finish line for first flight

Arianespace orbits 600th satellite, the PRISMA EO satellite for Italy

Rocket Crafters pivots with new patents for 3D-printed fuel

Ariane 6 maiden flight will deploy satellites for OneWeb, additional launches booked

Laser blasts show asteroid bombardment, hydrogen make great recipe for life on Mars

Google and Haughton-Mars Project Partner on Moon-Mars Exploration Prep

ExoMars landing platform arrives in Europe with a name

NASA's Mars 2020 rover is put to the test

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Inmarsat agrees to $3.4 bn takeover from consortium

OneWeb starts to mass-produce satellites in Florida

UAE announces pan-Arab body for space programme

Lockheed Martin develops world-first LTE-Over-Satellite System

Raytheon to update Advanced Synthentic Aperture Radar for U-2 Dragon Lady

At the limits of detectability

Raytheon tests EASR all-purpose surveillance radar for U.S. Navy

Air Force, education and industry partners work together to gather space radiation data

Icy giant planets in the laboratory

Neural Networks Predict Planet Mass

Astrobiology seminar aims to inspire a look into the bounds of life

Carbon monoxide detectors could warn of extraterrestrial life

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt

Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.