24/7 Space News
TECH SPACE
Flexible electronics integrated with paper-thin structure for use in space
The extended boom showing a lightweight, flexible electronics patch with a motion sensor, and a temperature sensor mounted on the boom tip
Flexible electronics integrated with paper-thin structure for use in space
by Debra Levey Larson | Grainger College of Engineering
Urbana IL (SPX) Jan 17, 2025

Being lightweight is essential for space structures, particularly for tools used on already small, lightweight satellites. The ability to perform multiple functions is a bonus. To address these characteristics in a new way, researchers at the University of Illinois Urbana-Champaign successfully integrated flexible electronics with a three-ply, self-deployable boom that weighs only about 20 grams.

"It's difficult to get commercial electronics integrated into these super thin structures," said Xin Ning, an aerospace professor in The Grainger College of Engineering at U. of I. "There were a lot of engineering constraints adding to the challenge of making the electronics able to withstand the harsh environment of space."

Ning said the concept for the work began at a conference about two years ago. He presented his unique expertise in making multifunctional space structures that integrate lightweight, flexible electronics.

"It got the attention of Juan Fernandez from NASA Langley Research Center. He was making a boom structure for a Virginia Tech CubeSat project and saw the opportunity to collaborate and add multi-functional devices to the structures instead of just a pure structure," Ning said.

Ultimately, the boom to contain the electronics was made at NASA Langley Research Center, Ning said. It is a three-ply carbon fiber and epoxy composite material designed to be extremely thin - about as thick as a sheet of paper. It is rolled up like a tape measure with stored energy in its coils until it unfurls on its own in space.

"Virginia Tech had specific requirements for us to follow, some that created challenges," Ning said. "One was the length. They wanted to have power and data lines over a meter in length embedded in a paper-thin composite material. We tried different materials and different technologies.

"Eventually, we went with thin commercial wires coated with insulation and it worked. I think we were overthinking it at the beginning. We tried more difficult, fancier approaches, but they failed. This was a simple and reliable solution using off-the-shelf, readily available wires."

Another key component is a lightweight, flexible electronics patch with a motion sensor, a temperature sensor, and a blue LED, all mounted on the boom tip. Ning explained that the electronics needed to endure the harsh thermal-vacuum conditions of space while remaining flexible enough to withstand the sudden unfurling of the coiled boom. The motion sensor monitors the deployment and vibration of the boom, and the blue LED assists CubeSat cameras in seeing the structure in space once deployed.

Ning's team conducted comprehensive on-ground experiments and simulations to explore the mechanics of the bistable boom with flexible electronics, as well as its deployment and vibration behavior. Ning said that these fundamental studies could offer valuable insights for future designs of multifunctional space structures.

The Virginia Tech three-unit CubeSat with the multifunctional boom is aiming for launch in 2025.

"We are also working on making the flexible electronics more durable in space - ways to protect the electronics so they will be operational longer in the space environment."

Research Report:Multifunctional bistable ultrathin composite booms with flexible electronics

Related Links
The Grainger College of Engineering
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Researchers develop breakthrough one-step flame retardant for cotton textiles
Bryan TX (SPX) Jan 14, 2025
Although extremely flammable, cotton is one of the most commonly used textiles due to its comfort and breathable nature. However, in a single step, researchers from Texas A and M University can reduce the flammability of cotton using a polyelectrolyte complex coating. The coating can be tailored for various textiles, such as clothing or upholstery, and scaled using the common pad-dry coating process, which is suitable for industrial applications. This technology can help to save property and lives on a ... read more

TECH SPACE
India becomes 4th nation to complete unmanned docking in space

India achieves 'historic' space docking mission

Stranded astronaut Suni Williams performs spacewalk at ISS

Health checks and suit installs before Thursday ISS spacewalk for science upkeep

TECH SPACE
Musk, Wikipedia founder in row over how to describe 'Nazi salute'

SpaceX again scrubs launch of more satellites from California

SpaceX catches Starship booster again, but upper stage explodes

FAA grounds SpaceX Starship launches after breakup

TECH SPACE
Trump vows to plant flag on Mars, omits mention of Moon return

Samples from Mars to reveal planet's evolutionary secrets

NASA to evaluate dual strategies for bringing Mars samples back to Earth

NASA eyes SpaceX, Blue Origin to cut Mars rock retrieval costs

TECH SPACE
H3 Shenzhou-19 astronauts advance experiments aboard Tiangong space station

Scientists plan to create the first fluttering flag on the moon

Tech innovation propels China's commercial space industry growth

China's human spaceflight program achieves key milestones in 2024

TECH SPACE
The Space Economy to Reach $944 Billion by 2033

ispace-EUROPE secures historic authorization for Lunar resource mission

Optimal Satcom surpasses 100 enterprise customers

Elsayed Talaat Appointed President and CEO of USRA

TECH SPACE
Flexible electronics integrated with paper-thin structure for use in space

Musk bashes Trump-backed AI mega project

Turn on the lights DAVD display helps navy divers navigate undersea conditions

Musk bashes Trump-backed AI mega project

TECH SPACE
Dormancy as a survival strategy for life's origins

SETI Forward celebrates the future of cosmic exploration

An autonomous strategy for life detection on icy worlds using Exo-AUV

Living in the deep, dark, slow lane: Insights from the first global appraisal of microbiomes in Earth's subsurface environments

TECH SPACE
SwRI models suggest Pluto and Charon formed similarly to Earth and Moon

Citizen scientists help decipher Jupiter's cloud composition

Capture theory unveils how Pluto and Charon formed as a binary system

Texas A and M researchers illuminate the mysteries of icy ocean worlds

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.