. | . |
ExoMars orbiter prepares for Rosalind Franklin by Staff Writers Paris (ESA) May 31, 2019
On 15 June, the ESA-Roscosmos ExoMars Trace Gas Orbiter (TGO) will follow a different path. An 'Inclination Change Manoeuvre' will put the spacecraft in an altered orbit, enabling it to pick up crucial status signals from the ExoMars rover, Rosalind Franklin, due to land on the Red Planet in 2021. After completing a complex series of manoeuvres during 2017, ExoMars TGO is now orbiting the Red Planet every two hours, collecting scientific data from NASA's surface-bound rover and lander, and relaying it back to Earth. At the same time, the orbiter is gathering its own data on the planet's atmosphere, water abundance and alien surface. More than a year before Rosalind even lifts off from Earth's surface, flight dynamics experts at ESA's ESOC mission control centre have formulated a long-term plan to ensure ExoMars TGO can communicate with the new ESA rover and surface platform, contained in the entry, descent and landing module. Slight changes to a spacecraft's orbit have a large effect over time, so while the upcoming manoeuvres will only slightly alter TGO's speed, it will be in the right position to communicate with the then-incoming rover by 2021.
TGO's natural motion To keep in touch with the descent module as it enters the Martian atmosphere, descends, and lands upon its surface, TGO's orientation needs to change. Three manoeuvres in the month of June will alter TGO's speed, twice by 30.9 metres per second and one final small change of 1.5 metres per second, bringing it slightly closer to the Martian poles.
Inclined to fly The green line represents Rosalind Franklin's landing approach path. The black line shows the TGO orbit with its optimised orientation, two years after the upcoming manoeuvres. The red path shows TGO's original orbit.
In-phase with Rosalind Franklin In February 2021, a small manoeuvre will be performed to ensure TGO is in the right place at the right time for the lander's arrival. The result of all these manoeuvres combined can be seen in the third graphic. The black line represents TGO's orbit around Mars at the time Rosalind Franklin begins descending, shown by the green line. Blue dots along the orbits of both spacecraft are connected by horizontal lines, illustrating their relative positions at different time intervals, and how they are able to 'see' each other at every moment, thus ensuring that radio contact can be maintained.
Un-phased In this final graphic, the red line illustrates TGO's un-phased orbit, and again the green line shows Rosalind Franklin's entry path and Blue dots represent moments in time for each spacecraft. Lines between the dots reveal how in this scenario, Mars would block their view of each other. Without phasing the orbiter with the Mars rover, the two craft will remain invisible to each other at the crucial moment when the rover descends to the surface. Not only does the foresight and long-term planning of mission experts ensure communication is maintained between two of ESA's most important Mars missions, it saves fuel - a huge amount of which would be needed to get TGO in the right position in the weeks or even months before the ExoMars rover's arrival.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |