. 24/7 Space News .
CHIP TECH
Electrospinning promises major improvements in wearable technology
by Staff Writers
Washington DC (SPX) Jun 29, 2022

Electrospun nanofibers boast numerous advantages over conventional bulk materials for the development of wearables. CREDIT: Sameer Sonkusale

Wearable technology has exploded in recent years. Spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices, wearables encompass miniaturized electronic devices worn directly on the human skin for sensing a range of biophysical and biochemical signals or, as with smart watches, for providing convenient human-machine interfaces.

Engineering wearables for optimal skin conformity, breathability, and biocompatibility without compromising the tunability of their mechanical, electrical, and chemical properties is no small task. The emergence of electrospinning - the fabrication of nanofibers with tunable properties from a polymer base - is an exciting development in the field.

In APL Bioengineering, by AIP Publishing, researchers from Tufts University examined some of the latest advances in wearable electronic devices and systems being developed using electrospinning.

"We show how the scientific community has realized many remarkable things using electrospun nanomaterials," said author Sameer Sonkusale. "They have applied them for physical activity monitoring, motion tracking, measuring biopotentials, chemical and biological sensing, and even batteries, transistors, and antennas, among others."

Sonkusale and his colleagues showcase the many advantages electrospun materials have over conventional bulk materials.

Their high surface-to-volume ratio endows them with enhanced porosity and breathability, which is important for long-term wearability. Also, with the appropriate blend of polymers, they can achieve superior biocompatibility.

Conductive electrospun nanofibers provide high surface area electrodes, enabling both flexibility and performance improvements, including rapid charging and high energy storage capacities.

"Also, their nanoscale features mean they adhere well to the skin without need for chemical adhesives, which is important if you are interested in measuring biopotentials, like heart activity using electrocardiography or brain activity using electroencephalography," said Sonkusale.

Electrospinning is considerably less expensive and more user-friendly than photolithography for realizing nanoscale transistor morphologies with superior electronic transport.

The researchers are confident electrospinning will further establish its claim as a versatile, feasible, and inexpensive technique for the fabrication of wearable devices in the coming years. They note there are areas for improvement to be considered, including broadening the choice for materials and improving the ease of integration with human physiology.

They suggest the aesthetics of wearables may be improved by making them smaller and, perhaps, with the incorporation of transparent materials, "almost invisible."

Research Report:"Recent progress in electrospun nanomaterials for wearables"


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
A golden ticket to smaller electronics
Osaka, Japan (SPX) Jun 23, 2022
Scientists from the Flexible 3D-System Integration Laboratory at Osaka University developed a new method for the direct three-dimensional bonding of copper electrodes using silver, which can reduce the cost and energy requirements of new electronic devices. This work may help in the design of next-generation smart devices that are more compact and use less electricity. Three-dimensional integrated circuits are playing an increasingly important role in electronic devices. Compared with conventional ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Rocket Lab's Lunar Photon completes 3rd orbit raising maneuver for CAPSTONE Moon mission

Rocket Lab's Lunar Photon completes 6th orbital raise preps for final Earth-escape burn

How scientist proposed a novel Kalman filter for target tracking in space

Rocket Lab launches CAPSTONE microsat to test new lunar orbit design for NASA

CHIP TECH
Successful high-speed flight experiments with new sounding rocket configuration

SES's C-band satellite launched onboard SpaceX Falcon 9

Virgin Orbit establishes sew Brazilian subsidiary; now licensed for launch operations in Alcantara

NASA completes Wet Dress Rehearsal, moves forward toward launch

CHIP TECH
My Favorite Martian Image: 'Enchanted' Rocks at Jezero Crater

Help NASA scientists find clouds on Mars

Digging into our new drill hole: Sols 3517-3518

NASA's Curiosity takes inventory of key life ingredient on Mars

CHIP TECH
Chinese official says its Mars sample mission will beat NASA back to Earth

China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

CHIP TECH
SES-22 set to launch on Falcon 9 June 29

Inmarsat report calls for enhanced debris mitigation and stronger regulations in space

Beyond Gravity launches its own start-up program "Launchpad"

A modern space race needs to be built on sustainability

CHIP TECH
ICEYE expands its business to offer complete satellite missions for customers

Quantum sensor can detect electromagnetic signals of any frequency

California passes sweeping law to reduce non-recyclable plastic

Single-atom tractor beams power chemical catalysis

CHIP TECH
Life in the Earth's interior as productive as in some ocean waters

Long-term liquid water also on non-Earth-like planets

Ancient microbes may help us find extraterrestrial life forms

A novel crystal structure sheds light on the dynamics of extrasolar planets

CHIP TECH
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.