. | . |
Long-term liquid water also on non-Earth-like planets by Staff Writers Bern, Switzerland (SPX) Jun 29, 2022
Liquid water is an important prerequisite for life to develop on a planet. As researchers from the University of Bern, the University of Zurich and the National Centre of Competence in Research (NCCR) PlanetS report in a new study, liquid water could also exist for billions of years on planets that are very different from Earth. This calls our currently Earth-centred idea of potentially habitable planets into question. Life on Earth began in the oceans. In the search for life on other planets, the potential for liquid water is therefore a key ingredient. To find it, scientists have traditionally looked for planets similar to our own. Yet, long-term liquid water does not necessarily have to occur under similar circumstances as on Earth. Researchers of the University of Bern and the University of Zurich, who are members of the National Centre of Competence in Research (NCCR) PlanetS, report in a study published in the journal Nature Astronomy, that favourable conditions might even occur for billions of years on planets that barely resemble our home planet at all.
Primordial greenhouses Earth's atmosphere used to be very different in its ancient history, however. "When the planet first formed out of cosmic gas and dust, it collected an atmosphere consisting mostly of Hydrogen and Helium - a so-called primordial atmosphere", Helled points out. Over the course of its development, however, Earth lost this primordial atmosphere. Other, more massive planets can collect much larger primordial atmospheres, which they can keep indefinitely in some cases. "Such massive primordial atmospheres can also induce a greenhouse effect - much like Earth's atmosphere today. We therefore wanted to find out if these atmospheres can help to create the necessary conditions for liquid water", Helled says.
Liquid water for billions of years "What we found is that in many cases, primordial atmospheres were lost due to intense radiation from stars, especially on planets that are close to their star. But in the cases where the atmospheres remain, the right conditions for liquid water can occur", reports Marit Mol Lous, PhD student and lead-author of the study. According to the researcher at the University of Bern and the University of Zurich, "in cases where sufficient geothermal heat reaches the surface, radiation from a star like the Sun is not even necessary so that conditions prevail at the surface that allow the existence of liquid water." "Perhaps most importantly, our results show that these conditions can persist for very long periods of time - up to tens of billions of years", points out the researcher, who is also a member of the NCCR PlanetS.
Broadening the horizon for the search for extraterrestrial life "Since the availability of liquid water is a likely prerequisite for life, and life probably took many millions of years to emerge on Earth, this could greatly expand the horizon for the search for alien lifeforms. Based on our results, it could even emerge on so-called free-floating planets, that do not orbit around a star", Mordasini says. Yet the researcher remains cautious: "While our results are exciting, they should be considered with a grain of salt. For such planets to have liquid water for a long time, they have to have the right amount of atmosphere. We do not know how common that is." "And even under the right conditions, it is unclear how likely it is for life to emerge in such an exotic potential habitat. That is a question for astrobiologists. Still, with our work we showed that our Earth-centred idea of a life-friendly planet might be too narrow", Mordasini concludes.
Research Report:Potential long-term habitable conditions on planets with primordial H-He atmospheres
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |