. 24/7 Space News .
CHIP TECH
A golden ticket to smaller electronics
by Staff Writers
Osaka, Japan (SPX) Jun 23, 2022

file illustration only

Scientists from the Flexible 3D-System Integration Laboratory at Osaka University developed a new method for the direct three-dimensional bonding of copper electrodes using silver, which can reduce the cost and energy requirements of new electronic devices. This work may help in the design of next-generation smart devices that are more compact and use less electricity.

Three-dimensional integrated circuits are playing an increasingly important role in electronic devices. Compared with conventional 2D circuits, these architectures can save both space and reduce the material required for interconnecting wires. However, the ability to form reliable 3D connections requires new methods compared with the mature technologies in use for convention integrated circuits.

Now, a team of researchers at Osaka University showed how to directly connect copper electrode "bumps" using silver layers. "Our process can be performed under gentle conditions, at relatively low temperatures and without added pressure, but the bonds were able to withstand over one thousand cycles of thermal shocking from -55 to 125 + C," first author Zheng Zhang says.

In this new method, silver is first sputtered onto the two copper surfaces to be bonded at room temperature. Then, heat was applied to anneal the silver layers, which caused the surface to undergo microscopic changes in a process called "stress migration." The release of the stress during annealing led to surface roughening, which ensured a sufficient effective area between the two silver layers.

As a result, bonding could be accomplished without applied pressure even at a comparative low annealing temperature. Permanent connections as small as 20 micrometers could be realized in just ten minutes this way. This process also requires only moderate temperatures (180C) and can work under atmospheric conditions.

The team was able to confirm the surface roughness of the sputtered and annealed chips using images from by scanning electron microscopy and atomic force microscopy. "This technology is expected to contribute to chips with a high density of interconnects and advanced 3D packaging," senior author Katsuaki Suganuma says.

Research Report: "Ag-Ag direct bonding via a pressureless, low-temperature, and atmospheric stress migration bonding method for 3D integration packaging"


Related Links
Osaka University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Controlled synthesis of crystal flakes paves path for advanced future electronics
Beijing, China (SPX) Jun 21, 2022
The third dimension may be responsible for preventing electronics from becoming thinner, tinier and more flexible, according to an international collaboration that developed a way to manufacture new, idealized two-dimensional semiconductor materials. The researchers, led by Lin Zhou, associate professor of chemistry at Shanghai Jiao Tong University in China, focused on indium arsenide (InAs), a narrow bandgap semiconductor with properties useful for high-speed electronics and highly sensitive infr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
South Korea space rocket launch puts satellites in orbit

ISS maneuvered around Russian satellite debris

Sidus Space working with NASA team for Extravehicular Activity Services Contract

Sierra Space to train astronauts at Kennedy Space Center for Orbital Reef

CHIP TECH
Go ahead for second round of micro-launcher payload competition

South Korea launches domestically-developed space rocket

South Korea launches homegrown Nuri rocket in major space milestone

NASA fully loads Artemis 1 rocket with fuel in successful 'wet' rehearsal

CHIP TECH
Researcher awarded $100,000 to identify potential fuel source on Mars

Martian meteorite upsets planet formation theory

A summer science smorgasbord: Sols 3505-3506

Sols 3503-3504: And We're Back

CHIP TECH
China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

CHIP TECH
Globalstar announces successful launch of spare satellite

ESA sets out bold ambitions for space

Airbus built MEASAT-3d communications satellite ready for launch

NASA, ESA discuss sending first European to Moon

CHIP TECH
Shaping the future of purification

Chile workers end strike at world's largest copper producer

Workers strike at world's largest copper producer, Chile's Codelco

Cities of the future may be built with algae-grown limestone

CHIP TECH
UK Government takes leading role in new space telescope to explore exoplanets

Did a giant radio telescope in China just discover aliens? Not so FAST

Astronomers discover a multiplanet system nearby

NASA mission discovers 2 Earth-like exoplanets

CHIP TECH
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.