. 24/7 Space News .
STELLAR CHEMISTRY
ESO telescope sees surface of dim Betelgeuse
by Staff Writers
Munich, Germany (SPX) Feb 17, 2020

The red supergiant star Betelgeuse, in the constellation of Orion, has been undergoing unprecedented dimming. This stunning image of the star's surface, taken with the SPHERE instrument on ESO's Very Large Telescope late last year, is among the first observations to come out of an observing campaign aimed at understanding why the star is becoming fainter. When compared with the image taken in January 2019, it shows how much the star has faded and how its apparent shape has changed.

Using ESO's Very Large Telescope (VLT), astronomers have captured the unprecedented dimming of Betelgeuse, a red supergiant star in the constellation of Orion. The stunning new images of the star's surface show not only the fading red supergiant but also how its apparent shape is changing.

Betelgeuse has been a beacon in the night sky for stellar observers but it began to dim late last year. At the time of writing Betelgeuse is at about 36% of its normal brightness, a change noticeable even to the naked eye. Astronomy enthusiasts and scientists alike were excitedly hoping to find out more about this unprecedented dimming.

A team led by Miguel Montarges, an astronomer at KU Leuven in Belgium, has been observing the star with ESO's Very Large Telescope since December, aiming to understand why it's becoming fainter. Among the first observations to come out of their campaign is a stunning new image of Betelgeuse's surface, taken late last year with the SPHERE instrument.

The team also happened to observe the star with SPHERE in January 2019, before it began to dim, giving us a before-and-after picture of Betelgeuse. Taken in visible light, the images highlight the changes occurring to the star both in brightness and in apparent shape.

Many astronomy enthusiasts wondered if Betelgeuse's dimming meant it was about to explode. Like all red supergiants, Betelgeuse will one day go supernova, but astronomers don't think this is happening now. They have other hypotheses to explain what exactly is causing the shift in shape and brightness seen in the SPHERE images. "The two scenarios we are working on are a cooling of the surface due to exceptional stellar activity or dust ejection towards us," says Montarges [1]. "Of course, our knowledge of red supergiants remains incomplete, and this is still a work in progress, so a surprise can still happen."

Montarges and his team needed the VLT at Cerro Paranal in Chile to study the star, which is over 700 light-years away, and gather clues on its dimming. "ESO's Paranal Observatory is one of few facilities capable of imaging the surface of Betelgeuse," he says. Instruments on ESO's VLT allow observations from the visible to the mid-infrared, meaning astronomers can see both the surface of Betelgeuse and the material around it. "This is the only way we can understand what is happening to the star."

Another new image, obtained with the VISIR instrument on the VLT, shows the infrared light being emitted by the dust surrounding Betelgeuse in December 2019. These observations were made by a team led by Pierre Kervella from the Observatory of Paris in France who explained that the wavelength of the image is similar to that detected by heat cameras. The clouds of dust, which resemble flames in the VISIR image, are formed when the star sheds its material back into space.

"The phrase 'we are all made of stardust' is one we hear a lot in popular astronomy, but where exactly does this dust come from?" says Emily Cannon, a PhD student at KU Leuven working with SPHERE images of red supergiants.

"Over their lifetimes, red supergiants like Betelgeuse create and eject vast amounts of material even before they explode as supernovae. Modern technology has enabled us to study these objects, hundreds of light-years away, in unprecedented detail giving us the opportunity to unravel the mystery of what triggers their mass loss."


Related Links
ESO
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
NASA's Spitzer Space Telescope Ends Mission of Astronomical Discovery
Pasadena CA (JPL) Jan 31, 2020
After more than 16 years studying the universe in infrared light, revealing new wonders in our solar system, our galaxy and beyond, NASA's Spitzer Space Telescope's mission has come to an end. Mission engineers confirmed at about 2:30 p.m. PDT (5:30 p.m. EDT) Thursday the spacecraft was placed in safe mode, ceasing all science operations. After the decommissioning was confirmed, Spitzer Project Manager Joseph Hunt declared the mission had officially ended. Launched in 2003, Spitzer was one of NASA ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA selects four possible missions to study the secrets of the solar system

'Pale Blue Dot' Revisited

Northrop postpones Antares rocket launch in Virginia on Sunday

NASA expects thousands to apply for astronaut jobs ahead of moon missions

STELLAR CHEMISTRY
NASA, Europe space agency launch Solar Orbiter mission

Economical and environmentally friendly solutions on the commercial satellites market

Artemis I progresses toward launch

Electric solid propellant - can it take the heat?

STELLAR CHEMISTRY
Mars 2020 equipped with laser vision and better mics

Nilosyrtis Mensae - erosion on a large scale

Mars 2020 rover goes coast-to-coast to prep for launch

SwRI models hint at longer timescale for Mars formation

STELLAR CHEMISTRY
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

STELLAR CHEMISTRY
Understanding the impact of satellite constellations on astronomy

Maxar Technologies will build Intelsat Epic geostationary communications satellite with NASA hosted payload

Australia's first space incubator seeks global applicants for 2020 program

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

STELLAR CHEMISTRY
Orion "Passengers" on Artemis I to test radiation vest for deep space missions

Researchers develop smaller, lighter radiation shielding

NASA prepares for Moon and Mars with new addition to its deep space network

Astroscale teams with JAXA for Commercial Removal of Debris Demonstration Project

STELLAR CHEMISTRY
Distant giant planets form differently than 'failed stars'

Scientists discover nearest known 'baby giant planet'

Scientists pick up pattern of space radio signals for 1st time, study says

CHEOPS space telescope takes its first pictures

STELLAR CHEMISTRY
A close-up of Arrokoth reveals how planetary building blocks were constructed

New Horizons team discovers a critical piece of the planetary formation puzzle

Pluto's icy heart makes winds blow

Why Uranus and Neptune are different









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.