. 24/7 Space News .
CARBON WORLDS
Diving into Earth's interior helps scientists unravel secrets of diamond formation
by Staff Writers
Bristol UK (SPX) Feb 27, 2019

File image of 2 opposed diamond anvils in a diamond anvil cell edge.

It's the reason why the Earth has a clement stable climate and a low carbon dioxide atmosphere compared to that of Venus, for instance, which is in a runaway greenhouse state with high surface temperatures and a thick carbon dioxide atmosphere.

One major difference between Earth and Venus is the existence of active plate tectonics on Earth, which make our environment unique within our solar system.

But the atmosphere, oceans, and Earth's crust are only part of the story. The mantle, which represents 75% of Earth's volume, potentially holds more carbon than all other reservoirs combined.

Carbon - one of the essential building blocks of organic life - is taken into Earth's interior by subduction, where it drastically lowers the melting point of the solid mantle, forming carbonated melts (carbon-rich molten rocks) in the shallow mantle, fuelling surface volcanoes. Carbonate minerals may also be transported much deeper into the Earth, reaching the lower mantle, but what happens next is uncertain.

Answering that question is beset with challenges - conditions deep within the Earth are extreme and samples from the mantle are rare. The solution is to recreate those conditions in the lab using sophisticated technology.

Now a team of experimental geoscientists from the University of Bristol have done just that. Their results, published open access in Earth and Planetary Science letters, uncover new clues about what happens to carbonate minerals when they are transported into the mantle via subduction of the oceanic crust (where one of Earth's tectonic plates slides below another).

Their findings have uncovered a barrier to subduction of carbonate beyond depths of around 1,000km, where it reacts with silica in the oceanic crust to form diamonds that are stored in the deep Earth over geological timescales.

Dr James Drewitt from the School of Earth Sciences explains: "Do carbonate minerals remain stable through the Earth's lower mantle, and if not, what pressure/temperature changes does it take to spark reactions between the minerals and what do they look like? These are the questions we wanted to find the answers to - and the only way to get those answers was to reproduce the conditions of the Earth's interior."

Dr Drewitt and his team subjected synthetic carbonate rocks to very high pressures and temperatures comparable to deep Earth conditions of up to 90 GPa (about 900,000 atmospheres) and 2000 degrees C using a laser-heated diamond anvil cell. They found that carbonate remains stable up to depths of 1,000-1,300km, almost halfway to the core.

Under these conditions carbonate then reacts with surrounding silica to form a mineral known as bridgmanite, which forms most of the Earth's mantle. The carbon released by this reaction is in the form of solid carbon dioxide. As the hot surrounding mantle eventually heats up the subducted slab, this solid carbon dioxide breaks down to form superdeep diamonds.

Dr Drewitt adds: "Eventually the superdeep diamonds could be returned to the surface in upwelling mantle plumes, and this process could represent one of the sources of superdeep diamonds that we find at the surface and which provide the only direct evidence we have of the composition of the deep earth.

"This is exciting because the deepest humans have ever been able to drill is about 12 km, less than half the depth of Earth's crust. This pales in comparison to the massive scale of Earth's mantle, which extends to nearly 3,000 km depth."

The team used a diamond anvil cell to generate pressures equivalent to those found at these depths, loading samples under a microscope into a pressure chamber drilled out of a metal gasket which is then compressed between the gem quality, brilliant cut diamond anvils. The crystal structure of those samples was then analysed using x-ray diffraction at the UK synchrotron facility in Oxfordshire.

Dr Drewitt now plans to apply these high pressure and high-temperature experiments along with advanced computer simulation techniques to other minerals and materials, adding: "As well as carbon, there is potentially several ocean's worth of water transported deep into the mantle, and when released this will induce melting of Earth's upper and lower mantle.

"However, we cannot adequately test or understand current models of the dynamic behaviour of this water rich molten rock because we do not know their composition or their physical properties. The experiments at extreme conditions and advanced computer simulations that we are currently working on will help to resolve these problems."


Related Links
University of Bristol
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Scientists discovered where black carbon comes from in the Arctic in winter and summer
Tomsk, Russia (SPX) Feb 18, 2019
Scientists from seven countries, including Austria, the Netherlands and five key Arctic states (Russia, USA, Canada, Norway, and Sweden) - participants of the International Arctic Science Committee (IASC) published an article on the study of the so-called sources of black carbon emissions in the Arctic in the Science Advances. Black carbon (BC) aerosols are formed under incomplete fuel combustion in diesel engines, as well as during wildfires, wood burning in wood-burning stoves, brick-kilns, and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Virgin Galactic takes crew of three to altitude of 55 miles

Astronauts optimistic for ISS launch after botched flight

Space behaviour focus of Expedition 58

Technology developed in Brazil will be part of ISS

CARBON WORLDS
SpaceX releases Israeli moon lander, pair of satellites into orbit

NASA greenlights SpaceX crew capsule test to ISS

ArianeGroup and CNES launch ArianeWorks acceleration platform

Raptor engine beats Russian RD-180 record in combustion chamber pressure says Musk

CARBON WORLDS
InSight is the Newest Mars weather service

After a Reset, Curiosity Is Operating Normally

Creating a Space Colony Cryptocurrency

Northwestern study of analog crews in isolation reveals weak spots for Mission to Mars

CARBON WORLDS
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

CARBON WORLDS
OneWeb satellite launch could be postponed after Soyuz emergency

Es'hailSat and BridgeSat offer low-cost laser satellite comms to the Middle East

United Launch Services, SpaceX awarded satellite contracts

RIT faculty part of NASA's $242 million SPHEREx mission

CARBON WORLDS
Egypt to host Huawei's first MENA cloud platform: Cairo

Avoiding the crack of doom

Captured carbon dioxide converts into oxalic acid to process rare earth elements

NASA set to demonstrate x-ray communications in space

CARBON WORLDS
Researchers discover a flipping crab feeding on methane seeps

Discovery of Planets Around Cool Stars Enabled with Hobby-Eberly Telescope

NIST 'Astrocomb' Opens New Horizons for Planet-Hunting Telescope

NASA Selects New Mission to Explore Origins of Universe

CARBON WORLDS
New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule

Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon

Ultima Thule is more pancake than snowman, NASA scientists discover

New Horizons' evocative farewell glance at Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.