. | . |
NASA set to demonstrate x-ray communications in space by Lori Keesey for GSFC News Greenbelt MD (SPX) Feb 20, 2019
A new experimental type of deep space communications technology is scheduled to be demonstrated on the International Space Station this spring. Currently, NASA relies on radio waves to send information between spacecraft and Earth. Emerging laser communications technology offers higher data rates that let spacecraft transmit more data at a time. This demonstration involves X-ray communications, or XCOM, which offers even more advantages. X-rays have much shorter wavelengths than both infrared and radio. This means that, in principle, XCOM can send more data for the same amount of transmission power. The X-rays can broadcast in tighter beams, thus using less energy when communicating over vast distances. If successful, the experiment could increase interest in the communications technology, which could permit more efficient gigabits-per-second data rates for deep space missions. Gigabits per second is a data transfer rate equivalent to one billion bits, or simple binary units, per second. These extremely high-speed rates of data transfer are not currently common, but new research projects have pushed computing capability toward this range for some technologies. "We've waited a long time to demonstrate this capability," said Jason Mitchell, an engineer at NASA's Goddard Spaceflight Center in Greenbelt, Maryland, who helped develop the technology demonstration, which relies on a device called the Modulated X-ray Source, or MXS. "For some missions, XCOM may be an enabling technology due to the extreme distances where they must operate," Mitchell said. Perhaps more dramatically, at least as far as human spaceflight is concerned, X-rays can pierce the hot plasma sheath that builds up as spacecraft hurdle through Earth's atmosphere at hypersonic speeds. The plasma acts as a shield, cutting off radio frequency communications with anything outside the vehicle for several seconds - a nail-biting period of time dramatically portrayed in the movie, Apollo 13. No one has ever used X-rays in a communications system, though, so other applications not yet conceived could emerge, Mitchell said. "Our goal for the immediate future is finding interested partners to help further develop this technology," Mitchell said.
Encoding Digital Bits From the experimental payload, the MXS device will then send the encoded data via the modulated X-rays to detectors on the Neutron-star Interior Composition Explorer, or NICER, which is located 165 feet away - about the width of a football field - on the space station. In this way, NICER becomes the receiver of a one-way X-ray signal. Although the first XCOM test will involve the transmission of GPS-like signals, Mitchell said the team may attempt to transmit something more complicated after the initial attempt. "It's important is that we transmit a known code we can identify to make sure NICER receives the signal precisely the way we sent it," Mitchell said. Although primarily built to gather data about the densest objects in the universe - neutron stars and their pulsating next-of-kin, known as pulsars - NICER was also designed to demonstrate advanced technology. In addition to the XCOM demonstration, the mission proved the effectiveness of X-ray navigation in space, showing in 2017 that pulsars could be used as timing sources for navigational purposes. During that two-day demonstration, which the NICER team carried out with an experiment called Station Explorer for X-ray Timing and Navigation Technology, or SEXTANT, the mission gathered 78 measurements from four millisecond pulsars. The team fed that data into onboard algorithms to autonomously stitch together a navigational solution that revealed the location of NICER in its orbit around Earth as a space station payload. Within eight hours of starting the experiment, the system converged on a location within the targeted 6.2 miles and remained well below that threshold for the rest of the experiment. NICER's ability to carry out science and demonstrate emerging, revolutionary technologies has captured the attention of those planning NASA's next era of human spaceflight. Missions that perform multiple functions are now considered a model, said Jake Bleacher, lead exploration scientist responsible for identifying areas where Goddard scientists can support human exploration of the Moon and Mars.
Technology Heritage The idea was to establish a constellation of precisely aligned spacecraft that would in essence create an X-ray interferometer, an instrument used to measure displacements in objects. He conceived the idea of using X-ray sources as beacons to enable highly precise relative navigation. Using research and development funding, he developed the MXS. Gendreau then reasoned that if he could modulate X-rays through a modulator, he could also communicate, thus giving birth to the NICER three-in-one mission concept. The XCOM demonstration is managed by NASA's Space Communications and Navigation program within the Human Exploration and Operations Mission Directorate. NICER is an Astrophysics Mission of Opportunity within the Explorers program. The Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. For more on SCaN's advanced communications and navigation technology program, go here
Momentus Announces Orders are Open for the Vigoride Orbit Transfer Service Santa Clara CA (SPX) Feb 07, 2019 Momentus, provider of in-space transportation services, has announced that they are taking orders for their Vigoride and Vigoride Extended services (orbital repositioning for satellites with masses up to 250kg) and have signed their first customer: EXOLAUNCH, in a contract worth more than $6M. EXOLAUNCH (formerly ECM Launch Services), is a leading European launch services provider and cluster integrator, that will first use Vigoride in the fourth quarter of 2020 and Vigoride Extended in 2021. A gr ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |