. 24/7 Space News .
Can high-power microwaves reduce the launch cost of space-bound rockets?
by Staff Writers
Tsukuba, Japan (SPX) Apr 22, 2020

These are rockets used in the study.

Governments throughout the world use rockets to launch satellites and people into orbit. This currently requires a lot of high-energy fuel, which is 95% of total rocket mass. Because the launch cost of a rocket can reach 10 billion yen, launching a 1-gram payload is said to be the same as buying 1 gram of gold. Minimizing the total cost of launching rockets would maximize the scientific payloads and increase the feasibility of space exploration.

In a study published in the Journal of Spacecraft and Rockets, researchers from the University of Tsukuba have helped solve important wireless power transmission and other efficiency issues that must be overcome to use high-powered microwaves to supplement - or nearly replace - chemical fuel for rocket launches. Their study will help researchers in this line of work properly focus their efforts.

Researchers commonly believe that a rocket requires a megawatt of beam-powered propulsion - that's approximately the power output of 10 automobiles - per kilogram of payload to reach a minimal orbit. Whether microwave transmission is sufficiently efficient for real-world applications is an open question.

Microwave beams have been transmitted by using a ground antenna that is the same size as a rocket antenna. "However, practical applications will require a large ground-based transmitter and a small receiver on the rocket, and thus variable-focus transmission," explains Assistant Professor Kohei Shimamura, lead author of the study. "We wanted to not only demonstrate this approach, but also quantify its efficiency."

In their comprehensive study, the researchers calculated the efficiencies, at short distances, of a ground-based microwave generator (51%), wireless power supply that sends the microwaves to the rocket propulsion system (14%), receiving antenna on the rocket (34%), and propulsion device that uses the microwave energy to heat the rocket propellant (6%). "Researchers can now put numbers on how efficient variable-focus transmission is at present," says Associate Professor Tsuyoshi Kariya, the other main author of the study.

Future research will need to study and improve efficiencies at long distances. In the words of Associate Professor Shimamura: "This is a difficult challenge, but an important next step in advancing microwave technology to practical use in rocket launches."

Rockets are essential technology, but their launching cost is a major disadvantage for scientific missions. With future research, high-power microwaves may one day be a low-cost method of rocket propulsion.

Research paper

Related Links
University Of Tsukuba
Rocket Science News at Space-Travel.Com

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Russia starts adapting RD-180 engine used in US for super-heavy Yenisei Rocket
Moscow (Sputnik) Apr 22, 2020
Russia's Energomash rocket engine manufacturer, which is part of state space corporation Roscosmos, has started to adapt RD-180 engines, which have been in use for US Atlas carrier rockets, and the medium-class Soyuz-6 and super-heavy Yenisei launch vehicles, Energomash Director General Igor Arbuzov has said. "The RD-180 engine, which has unique flight statistics, will be used in the first stage of the Soyuz-6 rocket, which can replace the Soyuz-2 medium-class launch vehicle in the future, as well ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA researchers look to the future on Earth Day 50

Space Station science payload operations continue amid pandemic

Space tourists will celebrate New Year 2022 in orbit for first time

NASA Astronauts Meir, Morgan, Crewmate Skripochka Return from Space Station

Can high-power microwaves reduce the launch cost of space-bound rockets?

Russia starts adapting RD-180 engine used in US for super-heavy Yenisei Rocket

Iran hails military satellite launch as US tensions simmer

NASA, SpaceX to Launch First Astronauts to Space Station from U.S. Since 2011

Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home

Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

Momentus selected as launch provider for Swarm

SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

NewSpace Philosophies: Who, How, What?

Intelsat 901 Satellite Returns to Service Using Northrop Grumman's Mission Extension Vehicle

New Army tech may turn low-cost printers into high-tech producers

Utilizing the impact resistance of the world's hardest concrete for disaster prevention

Sensors woven into a shirt can monitor vital signs

Astronomers discover planet that never was

CHEOPS space telescope ready for scientific operation

HD 158259 and it's six planets almost in rhythm

Simulating early ocean vents shows life's building blocks form under pressure

New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.