. 24/7 Space News .
ROBO SPACE
COVID-19 mobile robot could detect and tackle social distancing breaches
by Staff Writers
College Park MD (SPX) Dec 03, 2021

The robot is detecting non-compliance to social distancing norms, classifying non-compliant pedestrians into groups and autonomously navigating to the static group with the most people in it (a group with 3 people in this scenario). The robot encourages the non-compliant pedestrians to move apart and maintain at least 2 meters of social distance by displaying a message on the mounted screen. The CS-robot also captures thermal images of the scene and transmits them to appropriate security/healthcare personnel.

A new strategy to reduce the spread of COVID-19 employs a mobile robot that detects people in crowds who are not observing social-distancing rules, navigates to them, and encourages them to move apart. Adarsh Jagan Sathyamoorthy of the University of Maryland, College Park, and colleagues present these findings in the open-access journal PLOS ONE on December 1, 2021.

Previous research has shown that staying at least two meters apart from others can reduce the spread of COVID-19. Technology-based methods-such as strategies using WiFi and Bluetooth-hold promise to help detect and discourage lapses in social distancing. However, many such approaches require participation from individuals or existing infrastructure, so robots have emerged as a potential tool for addressing social distancing in crowds.

Now, Sathyamoorthy and colleagues have developed a novel way to use an autonomous mobile robot for this purpose. The robot can detect breaches and navigate to them using its own Red Green Blue-Depth (RGB-D) camera and 2-D LiDAR (Light Detection and Ranging) sensor, and can tap into an existing CCTV system, if available. Once it reaches the breach, the robot encourages people to move apart via text that appears on a mounted display.

The robot uses a novel system to sort people who have breached social distancing rules into different groups, prioritize them according to whether they are standing still or moving, and then navigate to them. This system employs a machine-learning method known as Deep Reinforcement Learning and Frozone, an algorithm previously developed by several of the same researchers to help robots navigate crowds.

The researchers tested their method by having volunteers act out social-distancing breach scenarios while standing still, walking, or moving erratically. Their robot was able to detect and address most of the breaches that occurred, and CCTV enhanced its performance.

The robot also uses a thermal camera that can detect people with potential fevers, aiding contact-tracing efforts, while also incorporating measures to ensure privacy protection and de-identification.

Further research is needed to validate and refine this method, such as by exploring how the presence of robots impacts people's behavior in crowds.

The authors add: "A lot of healthcare workers and security personnel had to put their health at risk to serve the public during the COVID-19 pandemic. Our work's core objective is to provide them with tools to safely and efficiently serve their communities."

Research Report: "COVID surveillance robot: Monitoring social distancing constraints in indoor scenarios"


Related Links
Department of Electrical and Computer Engineering, University of Maryland
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Stanford engineers create perching bird-like robot
Stanford CA (SPX) Dec 02, 2021
Like snowflakes, no two branches are alike. They can differ in size, shape and texture; some might be wet or moss-covered or bursting with offshoots. And yet birds can land on just about any of them. This ability was of great interest to the labs of Stanford University engineers Mark Cutkosky and David Lentink - now at University of Groningen in the Netherlands - which have both developed technologies inspired by animal abilities. "It's not easy to mimic how birds fly and perch," said William Rode ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Russia to send Japanese tycoon to ISS in return to space tourism

Japanese duo prepare for first tourist flight to space station since 2009

Yusaku Maezawa: irreverent billionaire fascinated by space

NASA astronauts complete ISS spacewalk

ROBO SPACE
NASA awards Artemis contract for future SLS boosters

Galileo launch postponed

Rocket Lab readies Electron for lift-off in fastest launch turnaround yet

SpaceX successfully launches latest Starlink fleet from Florida

ROBO SPACE
Rover escapes from sand trap

Ingenuity heading north into Seitah for Flight 17

ESA's Mars Express unravels mystery of martian moon using 'fake' flybys

Sols 3314-3315: Bountiful, Beautiful Boulders!

ROBO SPACE
China to livestream first space class from Tiangong space station

Tianzhou cargo craft to help advance science

Rocket industrial park put into operation in Wuhan

Chinese astronauts' EVAs to help extend mechanical arm

ROBO SPACE
Soon, 1 out of every 15 points of light in the sky will be a satellite

ESA moves forward with your ideas for 11 pioneering missions

Carrier rocket takes off from Sichuan province

ESA helps Greece to boost its space investments

ROBO SPACE
Researchers develop novel 3D printing technique to engineer biofilms

New 'Halo' game debuts as Xbox turns 20

Researchers team up to get a clearer picture of molten salts

Reshaping the plastic lifecycle into a circle

ROBO SPACE
Gas bubbles in rock pores - a nursery for life on Early Earth

Iron integral to the development of life on Earth - and the possibility of life on other planets

Bolstering planetary biosecurity in an era of space exploration

Giant planets could reach "maturity" much earlier than previously thought

ROBO SPACE
Are Water Plumes Spraying from Europa

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.