. | . |
COVID-19 mobile robot could detect and tackle social distancing breaches by Staff Writers College Park MD (SPX) Dec 03, 2021
A new strategy to reduce the spread of COVID-19 employs a mobile robot that detects people in crowds who are not observing social-distancing rules, navigates to them, and encourages them to move apart. Adarsh Jagan Sathyamoorthy of the University of Maryland, College Park, and colleagues present these findings in the open-access journal PLOS ONE on December 1, 2021. Previous research has shown that staying at least two meters apart from others can reduce the spread of COVID-19. Technology-based methods-such as strategies using WiFi and Bluetooth-hold promise to help detect and discourage lapses in social distancing. However, many such approaches require participation from individuals or existing infrastructure, so robots have emerged as a potential tool for addressing social distancing in crowds. Now, Sathyamoorthy and colleagues have developed a novel way to use an autonomous mobile robot for this purpose. The robot can detect breaches and navigate to them using its own Red Green Blue-Depth (RGB-D) camera and 2-D LiDAR (Light Detection and Ranging) sensor, and can tap into an existing CCTV system, if available. Once it reaches the breach, the robot encourages people to move apart via text that appears on a mounted display. The robot uses a novel system to sort people who have breached social distancing rules into different groups, prioritize them according to whether they are standing still or moving, and then navigate to them. This system employs a machine-learning method known as Deep Reinforcement Learning and Frozone, an algorithm previously developed by several of the same researchers to help robots navigate crowds. The researchers tested their method by having volunteers act out social-distancing breach scenarios while standing still, walking, or moving erratically. Their robot was able to detect and address most of the breaches that occurred, and CCTV enhanced its performance. The robot also uses a thermal camera that can detect people with potential fevers, aiding contact-tracing efforts, while also incorporating measures to ensure privacy protection and de-identification. Further research is needed to validate and refine this method, such as by exploring how the presence of robots impacts people's behavior in crowds. The authors add: "A lot of healthcare workers and security personnel had to put their health at risk to serve the public during the COVID-19 pandemic. Our work's core objective is to provide them with tools to safely and efficiently serve their communities."
Research Report: "COVID surveillance robot: Monitoring social distancing constraints in indoor scenarios"
Stanford engineers create perching bird-like robot Stanford CA (SPX) Dec 02, 2021 Like snowflakes, no two branches are alike. They can differ in size, shape and texture; some might be wet or moss-covered or bursting with offshoots. And yet birds can land on just about any of them. This ability was of great interest to the labs of Stanford University engineers Mark Cutkosky and David Lentink - now at University of Groningen in the Netherlands - which have both developed technologies inspired by animal abilities. "It's not easy to mimic how birds fly and perch," said William Rode ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |