. 24/7 Space News .
ICE WORLD
Black carbon aerosols heating Arctic: Large contribution from mid-latitude biomass burning
by Staff Writers
Nagoya, Japan (SPX) Nov 08, 2021

Photo taken from the research aircraft Polar 5 during PAMRCMiP in 2018. A polluted layer was observed. A schematic drawing of transport of BC from mid-latitudes to the Arctic is also shown.

Over the past few decades, the annual average temperature in the Arctic has increased almost twice as fast as it has elsewhere in the world. Although the main driver of this warming is the global increase in the concentration of carbon dioxide, various climate forcers and feedback processes amplify Arctic warming. Black carbon (BC) aerosols in the Arctic have been attracting attention as a climate forcer that accelerates this warming.

BC emitted into the atmosphere by fossil fuel combustion and biomass burning efficiently absorbs solar radiation and heats the atmosphere. Furthermore, BC deposited on snow and ice can reduce their reflectivity and accelerate their melting. Most of the Arctic BC is believed to be transported from regions outside the Arctic. However, estimates of the relative contribution by a variety of sources to Arctic BC, and thus of BC's climate impact, still have considerable uncertainties.

Research content
The research group measured vertical profiles of BC mass concentrations up to 5 km high in the Arctic in March-April 2018, during the Polar Airborne Measurements and Arctic Regional Climate Model simulation Project (PAMARCMiP) led by the Alfred Wegener Institute (AWI) in Germany.

The observations were carried out using the AWI research aircraft Polar 5, and Station Nord (81.6N, 16.7W) as the operation base. Observed BC mass concentrations were compared with those obtained in past spring Arctic aircraft experiments (ARCTAS in 2008, HIPPO in 2010, and NETCARE in 2015) with the aim of identifying factors responsible for the year-to-year variation in BC abundance.

Black carbon mass concentrations in 2018 were between 7 and 23 nanograms per cubic metre (ng m-3), which were comparable to those in 2010. On the other hand, systematically higher values were observed in 2008 and 2015 at all altitudes up to 5 km. Even though each aircraft measurement was made over a limited area and time duration, these results reveal a significant year-to-year variation in BC mass concentrations in the Arctic spring.

Results
The research group found that relative changes in the year-to-year variation of "vertically integrated BC mass concentrations" - that is, the amount of BC in columns between 0 and 5 km altitudes - was generally consistent with that in biomass burning activities estimated using MODIS satellite-derived fire counts detected at latitudes north of 50N.

Transport of air influenced by biomass burnings in regions between latitudes 45-60N and longitudes 30-50E and 100-130E (western and eastern Eurasia, respectively) were likely responsible for the observed increase in BC levels during the Arctic spring.

During PAMARCMiP in 2018, a pollution layer, whose sources were likely to be biomass burnings in the mid-latitudes, was occasionally visible through the windows of the research aircraft. It is likely that more frequent transport of pollution from biomass burning to the Arctic had occurred during the observation periods in 2008 and 2015.

The research group also investigated the extent to which current numerical model simulations can reproduce the observed year-to-year variability in BC column amounts. The numerical models can separately estimate contributions from anthropogenic BC sources and that from biomass burning.

The numerical models reproduced the observations relatively well in 2010 and 2018, when biomass burning activity was low, whereas they showed much smaller values than the observations in 2008 and 2015, when biomass burning activity was high. These results suggest that current numerical models generally reproduce the contribution of anthropogenic BC well, while they significantly (by a factor of three) underestimate the contribution of BC from biomass burning.

Significance of the results
Atmospheric heating effects (positive radiative forcing) of BC in the Arctic are considered to be highest in spring when BC mass concentration is highest and incoming solar radiation is increasing. BC in spring is also important because slight changes in the timing of snow/ice melt can influence the radiation budget in the Arctic. The observations presented in this study provide useful bases to improve and evaluate numerical model simulations that assess the BC radiative effect in the Arctic.

Furthermore, global warming has the potential to increase biomass burning in mid- and high-latitudes. This study suggests that these future changes in BC emissions could influence the amount of Arctic BC and its radiative impacts more than estimates provided in previous studies.

Research Report: "Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring"


Related Links
Nagoya University
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Meltwater runoff from Greenland becoming more erratic
Paris (ESA) Nov 04, 2021
As world leaders and decision-makers join forces at COP26 to accelerate action towards the goals of the Paris Agreement, new research, again, highlights the value of satellite data in understanding and monitoring climate change. This particular new research, which is based on measurements from ESA's CryoSat mission, shows that extreme ice melting events in Greenland have become more frequent and more intense over the past 40 years, raising sea levels and the risk of flooding worldwide. The finding ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
High winds delay ISS astronauts' return to Earth

Astronauts to return from space station next week: NASA

New roles, combined offices for NASA Administrator Leadership Team

NASA, SpaceX delay ISS mission again for medical issue

ICE WORLD
Hypersonix to use Siemens' software in design of its hydrogen fuelled launchers

NASA prepares to fuel James Webb telescope for Dec. 18 launch

Major Artemis engine part arrives at Stennis for certification testing

NASA, SpaceX reschedule Crew-3 launch due to weather

ICE WORLD
Flight #15 - Start of the Return Journey

UNI Bremen involved in AMADEE-20 Mars Simulation

New Curtin study pinpoints likely home of Martian meteorites

Sol 3285: Oh So Close

ICE WORLD
Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

ICE WORLD
SpaceFund Invests in Rhea Space Activity

Geraldine Naja, Director of Commercialisation, Industry and Procurement

Amazon to launch two Project Kuiper satellites next fall

NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

ICE WORLD
Indian star Kamal Haasan to launch metaverse avatar

Healable carbon fiber composite offers path to long-lasting, sustainable materials

Securing data transfers with relativity

An artificial material that can sense, adapt to its environment

ICE WORLD
To find life on other planets, NASA rocket team looks to the stars

Rocky Exoplanets Are Even Stranger Than We Thought

Key role of the reactor surface in Miller's experiment on the molecular origin of life

Building planets from protoplanetary disks

ICE WORLD
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.