24/7 Space News
GPS NEWS
Ancient 'animal GPS system' identified in magnetic fossils
illustration only

Ancient 'animal GPS system' identified in magnetic fossils

by Sarah Collins for Cambridge News
Cambridge UK (SPX) Nov 19, 2025

The earliest evidence of an internal 'GPS' system in an animal has been identified by researchers, which could help explain how modern birds and fish evolved the ability to use the Earth's magnetic field to navigate long distances.

The tiny magnetic fossils - dating from 97 million years ago - were buried in ancient seafloor sediments, left behind by a mysterious, unidentified organism.

Shaped like spearheads, spindles, bullets and needles, and no larger than a bacterial cell, scientists believe these 'magnetofossils' are biological in origin, but they don't know what creature made them, or why.

Now, researchers have now solved part of the mystery and found that these fossils may have served as an animal GPS system, enabling organisms to read Earth's magnetic field like a map.

The researchers, from the University of Cambridge and the Helmholtz-Zentrum Berlin, captured the first 3D images of the fossils' magnetic structure, and revealed features optimised to detect both the direction and strength of Earth's magnetic field, which would have aided navigation.

"Whatever creature made these magnetofossils, we now know it was most likely capable of accurate navigation," said Professor Rich Harrison from Cambridge's Department of Earth Sciences, who co-led the research.

The discovery provides the first direct evidence that animals have been navigating using the Earth's magnetic field for at least 97 million years. It may also offer insights into how animals evolved this ability, known as 'magnetoreception'. The results are reported in the journal Communications Earth and Environment.

Life has evolved a range of extraordinary senses, and magnetoreception is one of the most poorly understood. Birds, fish, and insects use the Earth's magnetic field to navigate vast distances, but how they do this is still unclear. One theory is that tiny crystals of magnetite within the body align with the Earth's magnetic field, acting like microscopic compass needles.

Certain bacteria found in lakes and other bodies of water possess a primitive form of magnetoreception. Chains of tiny magnetic particles inside the bacteria allow them to line up with the magnetic field, helping them swim to their preferred depth in the water column.

"At just 50 - 100 nanometres wide, these particles are the perfect compass needles," said Harrison. "If you want to create the most efficient magnetic sense, smaller is better."

But the magnetofossils the team studied for the current study are 10 to 20 times larger than the magnetic particles used by bacteria, and were retrieved from a site in the North Atlantic Ocean. Previously, some researchers had argued that 'giant' magnetofossils may have served as protective spines.

However, model simulations have suggested that they might also possess advanced magnetic properties, something Harrison wanted to explore further. "It looks like this creature was carefully controlling the shape and structure of these fossils, and we wanted to know why," he said.

The researchers applied a new technique to visualise the fossil's internal structure, revealing how magnetic moments (tiny magnetic fields generated by spinning electrons) are arranged inside the magnetofossil.

Until now, scientists had been unable to capture 3D magnetic images of larger particles, such as giant magnetofossils, because X-rays couldn't penetrate them.

The research was made possible using a technique developed by co-author Claire Donnelly at the Max Planck Institute in Germany and carried out at the Diamond X-ray facility in Oxford.

"That we were able to map the internal magnetic structure with magnetic tomography was already a great result, but the fact that the results provide insight into the navigation of creatures millions of years ago is really exciting," said Donnelly.

Their images revealed an intricate magnetic configuration, with magnetic moments swirling around a central line running through the fossil's interior, forming a tornado-like vortex pattern.

This vortex magnetism provides ideal properties for navigation, said Harrison, generating a 'wobble' in response to tiny changes in the strength of the magnetic field that translate into detailed map information. "This magnetic particle not only detects latitude by sensing the tilt of Earth's magnetic field but also measures its strength, which can change with longitude," he said.

The geometry of this vortex structure is highly stable, meaning it can resist small environmental disturbances that may otherwise disrupt navigation. "If nature developed a GPS, a particle that can be relied upon to navigate thousands of kilometres across the ocean, then it would be something like this," he said.

In solving the enduring mystery over the fossils' function, the work also helps narrow the search for the animal that made them. "The next question is what made these fossils," said Harrison. "This tells us we need to look for a migratory animal that was common enough in the oceans to leave abundant fossil remains."

Harrison suggests that eels could be a potential candidate, since they evolved around 100 million years ago and remain one of the least understood and elusive animals. European and American eels travel thousands of kilometres from freshwater rivers to spawn in the Sargasso Sea. Though they can sense Earth's magnetic field, how they do so is unclear. Magnetite particles have been detected in eels but not yet imaged directly in their cells and tissues, partly because of their tiny size and the fact they could be hidden anywhere in the body.

Harrison worked closely with Sergio Valencia from Helmholtz-Zentrum Berlin in designing the research. "This was a truly international collaboration involving experts from different fields, all working together to shed light on the possible functionality of these magnetofossils," said Valencia.

Despite their as-yet-unknown host, "giant magnetofossils mark a key step in tracing how animals evolved basic bacterial magnetoreception into highly-specialised, GPS-like navigation systems," Harrison said.

The research was supported in part by the European Union, the European Research Council and the Royal Society. Rich Harrison is a Fellow of St Catharine's College, Cambridge.

Research Report:Magnetic vector tomography reveals giant magnetofossils are optimised for magnetointensity reception

Related Links
University of Cambridge
GPS Applications, Technology and Suppliers

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
GPS NEWS
Nanometer precision ranging demonstrated across 113 kilometers sets new benchmark for space measurement
Tokyo, Japan (SPX) Nov 08, 2025
Researchers from the University of Science and Technology of China, led by professors Jian-Wei Pan, Hai-Feng Jiang, and Qiang Zhang, have achieved nanometer-level absolute distance measurement over a 113-kilometer path using a bistatic dual-comb ranging (BDCR) approach. This technique attained a precision of 82 nanometers within 21 seconds, establishing a new standard for high-precision long-distance measurement. Dual-comb ranging technology combines time-of-flight measurement with phase interfero ... read more

GPS NEWS
Hydroponic plant factories enable continuous urban edamame harvest

Can America Beat China Back to the Moon?

Race for first private space station heats up as NASA set to retire ISS

Colorado Boulder advances research and education in space law and policy

GPS NEWS
Solar flares pause Blue Origin-NASA Mars probe launch

Blue Origin launches NASA Mars mission and nails booster landing

Record doubleheader: SpaceX launches 2 Falcon 9 rockets from Florida

Dream Chaser spaceplane passes pre-flight tests at Kennedy Space Center

GPS NEWS
Ancient Martian groundwater may have prolonged habitability beyond previous estimates

What a Martian ice age left behind

NASA twin spacecraft depart Earth orbit to begin Mars mission

Dust and Sand Movements Reshape Martian Slopes

GPS NEWS
China returns research samples from space station to Earth for study

Resupply spacecraft prepared for Tiangong station after safe crew return

China's Shenzhou-20 astronauts return to Earth after delay

Tiangong hosts dual crews after debris impact delays Shenzhou-20 return

GPS NEWS
ESA's impact featured in key UK space policy report

China moves forward with orbital internet network expansion

York Space Systems prepares for public offering as satellite deployments and contract wins drive growth

Fast Satellite Ground Synchronization Technology Advances Beam Hopping Communications

GPS NEWS
MIT researchers propose a new model for legible, modular software

Morphing 3D-printed structures from flat to curved, in space

York Space demonstrates successful payload commissioning for BARD mission

Europe commercial satellite life extension mission set for 2027

GPS NEWS
How to spot life in the clouds on other worlds

Exoplanet map initiative earns NASA support for University of Iowa physicist

3I/ATLAS Highlights Scale and Significance of Interstellar Objects Passing Through the Solar System

New study revises our picture of the most common planets in the galaxy

GPS NEWS
Saturn moon mission planning shifts to flower constellation theory

Could these wacky warm Jupiters help astronomers solve the planet formation puzzle?

Out-of-this-world ice geysers on Saturn's Enceladus

3 Questions: How a new mission to Uranus could be just around the corner

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.