. 24/7 Space News .
Advances in the design and manufacturing of novel freeform optics
by Staff Writers
Huddersfield UK (SPX) Jul 15, 2022

file illustration only

Freeform optics bring precision optical systems into a new ear, delivering superior imaging in compact packages, or functions otherwise impossible. Surfaces that are axially unbalanced or have no axis of rotational invariance are known as freeform surfaces. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thinking, and observing power of existing humans. Imaginations related to space explorations, portability, accessibility have also witnessed sensible in today's time with freeform optics. The optics, space, automotive, defense industries and many more are directly dependent on the time and cost involved in the complete production of advance designed freeform optics.

In a new paper published in the International Journal of Extreme Manufacturing, a team of researchers, led by Dr Zhen Tong from the Centre for Precision Technology, University of Huddersfield, United Kingdom, have summarized comprehensively the present state of the art of advances in freeform optics, its design methods, manufacturing, metrology, and their applications. The main aim in this review is to address certain questions like; What is our new understanding regarding freeform optics? At what stage have we reached in terms of developments and the applications of freeform surfaces in optical systems? How many efficient tools we have been developed in aspects of design, fabrication, and production? What are the main challenges in freeform optics production?

Various freeform optics and systems are designed with different methods such as partial differential equations, tailoring methods, point-to-point mapping, simultaneous multiple surface method, and aberration-based performance optimizations. All the final designs obtained using these methods are directly or indirectly associated with the Ultra-precision machining for fabrication at the nano or sub-nanometric level. To meet the requirements of the current market, process chains are dependent on the manufacturing types i.e. make-to-order, make-to-assemble and make-to-stock. Ultra-precision machining along with the figure correction techniques are the most trusted technologies for the development of freeform optics that fulfil the desired requirements of topographical errors such as low-, mid-, and high-spatial frequencies. With the multiple axes ultra-precision diamond cutting, one can fabricate the complexed shape at high accuracy and obtain a smooth optical surface.

Surface shape metrology will continue to be in high demand as a vital enabler for conforming to manufacturing chain criteria. Metrology's complexity increases with the increase in degree-of-freedom of freeform optics to be tested. Measurement problems for freeform optics rise with the sag differences, slopes, depths, surface roughness, measurement speed, environmental factors, temperature control, and aperture size. Because of these factors the cost of the whole freeform optics increases, therefore a proper balance must be maintained between controllable parameters to keep the final product cost within a limited range. Metrology can be done in several ways such as in-situ monitoring and off-line testing during and after fabricating the components.

Professor Dame Xiangqian Jiang (Director of EPSRC Future Metrology Hub, CPT), Dr Zhen Tong (Head of Ultra-precision Machining Group, CPT) and Mr Sumit Kumar (PhD Scholar) have identified a few critical challenges in the field of design, manufacturing, and metrology of freeform optics as follows:

"There is no such standard definition or tolerances for freeform surfaces that can be classified based on their performance. Is it possible to determine the relationship between surface roughness and specified tolerance at the design stage?"

"Design can be accomplished with the help of commercial optical design software such as Code V, Zemax, etc., however, the optimizations of complicated optical systems take a long duration of time to reach their optimum global solutions."

"Is it possible to develop a repeatable system for determining when and where the intended freeform optical surface should be positioned for optimal optical performance?"

"For novel freeform optics, manual analyses of manufacturing constraints in the design phase stand unreliable, impractical, and impossible. No doubt, there are custom software for freeform optics and will continue to become mainstream. However, fast and reliable solutions are required."

"As long as we want light, the demand for freeform optics will exists. How far we are to adopt complete solutions of sustainable manufacturing for the freeform optics?"

"Development towards special measurement system for modern optics of any size and features that can perform all types of measurements. This can have benefits such as reduced cost, measuring time, complexity, wear, data-processing and increase in planning time and production."

Researchers have suggested that the freeform optics must follow 3F's principle i.e. form, fit, and function. In achieving the 3F's of the freeform optical components and freeform optical systems, time plays a major role. Therefore, particularly for freeform optics advanced economical processes should be developed that does not negotiate the designer's efforts, reduces the time of assembly and testing and also reduces the energy consumption, and wastage of materials.

Research Report:Advances in the design and manufacturing of novel freeform optics

Related Links
University of Huddersfield
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

MIT engineers design surfaces that make water boil more efficiently
Boston MA (SPX) Jul 12, 2022
The boiling of water or other fluids is an energy-intensive step at the heart of a wide range of industrial processes, including most electricity generating plants, many chemical production systems, and even cooling systems for electronics. Improving the efficiency of systems that heat and evaporate water could significantly reduce their energy use. Now, researchers at MIT have found a way to do just that, with a specially tailored surface treatment for the materials used in these systems. T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA Highlights Climate Research on Cargo Launch, Sets Coverage

Short space trips for paying passengers on the way

Terran Orbital completes CAPSTONE's First TCM Burn

Jacobs Awarded $3.9B Engineering and Science Contract at NASA

NASA, SpaceX launch climate science research to ISS

Skyrora opens UK's largest rocket engine manufacturing facility

Maiden Flight of Vega-C: Top of new European rocket from Beyond Gravity

Ariane 6 central core transferred to mobile gantry

Ingenuity Postpones Flights Until August

Moving Right Along - Sol 3531

Machine learning 'phones home' for famous Martian rock

Source of ancient Martian rocks found using Perth supercomputer

China prepares to launch Wentian lab module

Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

Wheels on China's Zhurong rover keep stable with novel material

Construction of China's first commercial spacecraft launch site starts in Hainan

NASA and Houston's Ion Partner to Create Opportunities for Startup Community

Tech firms unveil plan for 'space-based' 5G network

ESA astronaut selection in the final stages

Kleos Space invests for future growth in the UK

A programming language for hardware accelerators

Advances in the design and manufacturing of novel freeform optics

France plans fashion revolution with climate-impact labels

World's first bioplastic vinyl record launched in the UK

To search for alien life, astronomers will look for clues in the atmospheres of distant planets

Webb begins hunt for the first stars and habitable worlds

Undead planets: the unusual conditions of the first exoplanet detection

The life puzzle: the location of land on a planet can affect its habitability

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.