. 24/7 Space News .
ENERGY TECH
A new type of battery that can charge ten times faster than a lithium-ion battery created
by Staff Writers
St. Petersburg, Russia (SPX) Apr 07, 2021

Symbolic representation of the chemical formula of the new polymer

It is difficult to imagine our daily life without lithium-ion batteries. They dominate the small format battery market for portable electronic devices, and are also commonly used in electric vehicles. At the same time, lithium-ion batteries have a number of serious issues, including: a potential fire hazard and performance loss at cold temperatures; as well as a considerable environmental impact of spent battery disposal.

According to the leader of the team of researchers, Professor in the Department of Electrochemistry at St Petersburg University Oleg Levin, the chemists have been exploring redox-active nitroxyl-containing polymers as materials for electrochemical energy storage.

These polymers are characterised by a high energy density and fast charging and discharging speed due to fast redox kinetics. One challenge towards the implementation of such a technology is the insufficient electrical conductivity. This impedes the charge collection even with highly conductive additives, such as carbon.

Looking for solutions to overcome this problem, the researchers from St Petersburg University synthesised a polymer based on the nickel-salen complex (NiSalen). The molecules of this metallopolymer act as a molecular wire to which energy-intensive nitroxyl pendants are attached. The molecular architecture of the material enables high capacitance performance to be achieved over a wide temperature range.

'We came up with the concept of this material in 2016. At that time, we began to develop a fundamental project "Electrode materials for lithium-ion batteries based on organometallic polymers".

It was supported by a grant from the Russian Science Foundation. When studying the charge transport mechanism in this class of compounds, we discovered that there are two keys directions of development. Firstly, these compounds can be used as a protective layer to cover the main conductor cable of the battery, which would be otherwise made of traditional lithium-ion battery materials. And secondly, they can be used as an active component of electrochemical energy storage materials,' explains Oleg Levin.

The polymer took over three years to develop. In the first year, the scientists tested the concept of the new material: they combined individual components to simulate the electrically conducting backbone and redox-active nitroxyl-containing pendants. It was essential to make certain that all parts of the structure worked in conjunction and reinforced each other.

The next stage was the chemical synthesis of the compound. It was the most challenging part of the project. This is because some of the components are extremely sensitive and even the slightest error of a scientist may cause degradation of the samples.

Of the several polymer specimens obtained, only one was found to be sufficiently stable and efficient. The main chain of the new compound is formed by complexes of nickel with salen ligands. A stable free radical, capable of rapid oxidation and reduction (charge and discharge), has been linked to the main chain via covalent bonds.

'A battery manufactured using our polymer will charge in seconds - about ten times faster than a traditional lithium-ion battery. This has already been demonstrated through a series of experiments. However, at this stage, it is still lagging behind in terms of capacity - 30 to 40% lower than in lithium-ion batteries. We are currently working to improve this indicator while maintaining the charge-discharge rate,' says Oleg Levin.

The cathode for the new battery has been fabricated - a positive electrode for use in chemical current sources. Now we need the negative electrode - the anode. In fact, it does not have to be created from scratch - it can be selected from the existing ones. Paired together they will form a system that, in some areas, may soon supersede lithium-ion batteries.

'The new battery is capable of operating at low temperatures and will be an excellent option where fast charging is crucial. It is safe to use - there is nothing that may pose a combustion hazard, unlike the cobalt-based batteries that are widespread today. It also contains significantly less metals that can cause environmental harm. Nickel is present in our polymer in a small amount, but there is much less of it than in lithium-ion batteries,' says Oleg Levin.

Research paper


Related Links
St. Petersburg State University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Is battery recycling environmentally friendly?
Helsinki, Finland (SPX) Apr 01, 2021
The EU will be home to 30 million electric cars by 2030 and the European Commission is preparing tough targets for recycling these and other batteries. Yet the impacts of battery recycling, especially for the sizeable lithium-ion batteries of the electric cars soon filling our streets, has been largely unstudied. In a new study, researchers at Aalto University have investigated the environmental effects of a hydrometallurgical recycling process for electric car batteries. Using simulation-based li ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Facing pressure at home, Chinese tech giants expand in Singapore

Virgin Galactic and Land Rover announce global partnership extension as new spaceship is revealed

Russian Progress MS-14 spacecraft sets new flight duration record

NASA Engineers Analyze Navigation Needs of Artemis Moon Missions

ENERGY TECH
SpaceX introduces final members of all-civilian Inspiration4 crew

SpaceX Starship rocket explodes again after test flight

SpaceX Starship test flight fails

SpaceX aims to nail landing of Starship on fourth attempt

ENERGY TECH
Rover drops off Mars Helicopter Ingenuity for first flight on Mars

NASA's Ingenuity helicopter dropped on Mars' surface ahead of flight

Researchers discover new type of ancient crater lake on Mars

NASA's Curiosity Mars rover takes selfie with Mont Mercou

ENERGY TECH
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

ENERGY TECH
Nine global space startups to join Australia's first space dedicated incubator program

New study finds satellites contribute significant light pollution to night skies

OneWeb welcomes TrustComm as a DoD Distribution Partner

NASA Provides $45M Boost to US Small Businesses

ENERGY TECH
A new technique to synthesize superconducting materials

Hitachi buys US software firm GlobalLogic for $9.6 bn

NASA tests mixed reality for mission operations for exploration

Tires turned into graphene that makes stronger concrete

ENERGY TECH
How asteroid dust helped us prove life's raw ingredients can evolve in outer space

Photosynthesis could be as old as life itself

Pandora Mission Would Expand NASA's Capabilities in Probing Alien Worlds

ASU scientists determine origin of strange interstellar object

ENERGY TECH
SwRI scientists discover a new auroral feature on Jupiter

The PI's Perspective: Far From Home

SwRI scientists help identify the first stratospheric winds measured on Jupiter

Jupiter's Great Red Spot feeds on smaller storms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.